【强化训练】沪教版(上海)八下 第二十三章概率初步同步测试试题(含答案及解析)

文档属性

名称 【强化训练】沪教版(上海)八下 第二十三章概率初步同步测试试题(含答案及解析)
格式 doc
文件大小 1.6MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-26 09:32:49

图片预览

文档简介

中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应 ( http: / / www.21cnjy.com )的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21·世纪*教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.“明天有雪”是随机事件
B.“太阳从西方升起”是必然事件
C.“翻开九年数学书,恰好是第35页”是不可能事件
D.连续抛掷100次质地均匀的硬币,55次正面朝上,因此正面朝上的概率是55%
2、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是(  )【来源:21cnj*y.co*m】
移植总数n 400 1500 3500 7000 9000 14000
成活数m 369 1335 3203 6335 8073 12628
成活的频率 0.923 0.890 0.915 0.905 0.897 0.902
A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率
B.可以用试验次数累计最多时的频率作为概率的估计值
C.由此估计这种幼苗在此条件下成活的概率约为0.9
D.如果在此条件下再移植这种幼苗20000株,则必定成活18000株
3、下列说法正确的有( )
①等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形.
②无理数在和之间.
③从,,,,这五个数中随机抽取一个数,抽到无理数的概率是.
④一元二次方程有两个不相等的实数根.
⑤若边形的内角和是外角和的倍,则它是八边形.
A.个 B.个 C.个 D.个
4、书架上放着两本散文和一本数学书,小明从中随机抽取一本,抽到数学书的概率是(  )
A.1 B. C. D.
5、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )
A. B. C. D.
6、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )
A. B. C. D.
7、下列说法正确的是( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.“心想事成,万事如意”描述的事件是随机事件
D.天气预报显示明天为阴天,那么明天一定不会下雨
8、下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
9、下列说法中,正确的是( )
A.“射击运动员射击一次,命中靶心”是必然事件
B.事件发生的可能性越大,它的概率越接近1
C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖
D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得
10、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别.从袋中随机摸出1个球是红球的概率为( )www.21-cn-jy.com
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某班共有36名同学,其中 ( http: / / www.21cnjy.com )男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.
2、小明和小强玩“石头、剪刀、布 ( http: / / www.21cnjy.com )”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为______.
3、一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率______.
4、某次体能测试,要求每名考生从跳绳、长跑、游泳三个项目中随机抽取一项参加测试,小东和小华都抽到游泳项目的概率是______.
5、有6张除数字外无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张记作,放回并混合在一起,再随机抽一张记作,组成有序实数对,则点在直线上的概率为______
三、解答题(5小题,每小题10分,共计50分)
1、随着“新冠肺炎”疫情防控形势日渐好转, ( http: / / www.21cnjy.com )各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.
(1)王老师被分配到“就餐监督岗”的概率为   ;
(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.
2、2021年6月17日 ( http: / / www.21cnjy.com ),神舟十二号成功发射,标志着我国载人航天踏上新征程.某学校举办航天知识讲座,需要两名引导员,决定从A,B,C,D四名志愿者中,通过抽签的方式确定两人.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.
(1)“A志愿者被选中”是______ 事件(填“随机”或“不可能”或“必然”);
(2)用画树状图或列表的方法求出A,B两名志愿者同时被选中的概率.
3、一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别.有如下两个活动:
活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为;21*cnjy*com
活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为.
请你猜想,的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想.
4、盲盒为消费市场注入了活力 ( http: / / www.21cnjy.com ).某商家将1副单价为60元的蓝牙耳机、2个单价为40元的多接口优盘、1个单价为30元的迷你音箱分别放入4个外观相同的盲盒中.
(1)如果随机抽一个盲盒,直接写出抽中多接口优盘的概率;
(2)如果随机抽两个盲盒,求抽中总价值不低于80元商品的概率.
5、现有A、B两个不透明袋子,分别装有 ( http: / / www.21cnjy.com )3个除颜色外完全相同的小球.其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球.小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小华获胜;若颜色不同,则小林获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平,如果不公平,谁获胜的机会大.
-参考答案-
一、单选题
1、A
【分析】
直接利用随机事件的定义以及概率的意义分别分析得出答案.
【详解】
解:A、“明天有雪”是随机事件,该选项正确,符合题意;
B、“太阳从西方升起”是不可能事件,原说法错误,该选项不符合题意;
C、“翻开九年数学书,恰好是第35页” 是随机事件,原说法错误,该选项不符合题意;
D、连续抛掷100次质地均匀的硬币,55次正面朝上,因此正面朝上的概率是55%,说法错误,该选项不符合题意;【来源:21·世纪·教育·网】
故选:A.
【点睛】
本题主要考查了概率的意义以及随机事件,正确把握定义是解题关键.
2、D
【分析】
根据频率估计概率逐项判断即可得.
【详解】
解:A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;
B.可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;
C.由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;
D.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;
故选:D.
【点睛】
本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键.
3、A
【分析】
根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案.
【详解】
解:菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;
无理数在和之间,正确,故本选项符合题意;
在,,,,这五个数中,无理数有,,共个,则抽到无理数的概率是,故本选项错误,不符合题意;
因为,则一元二次方程有两个相等的实数根,故本选项错误,不符合题意;
若边形的内角和是外角和的倍,则它是八边形,正确,故本选项符合题意;
正确的有个;
故选:.
【点睛】
此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键.2·1·c·n·j·y
4、D
【分析】
根据概率公式求解即可.
【详解】
∵书架上放着两本散文和一本数学书,小明从中随机抽取一本,
∴.
故选:D.
【点睛】
本题考查随机事件的概率,某事件发生的概率等于某事件发生的结果数与总结果数之比,掌握概率公式的运用是解题的关键.
5、D
【分析】
概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.
【详解】
解:书架上有本小说、本散文,共有本书,
从中随机抽取本恰好是小说的概率是;
故选:D.
【点睛】
本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.
6、B
【分析】
由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.
【详解】
解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,
∴从袋中任意摸出一个球,摸出的球是红球的概率是:.
故选:B.
【点睛】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
7、C
【详解】
解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;
C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;
D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;
故选:C
【点睛】
本题考查的是对随机事件和必然事件的 ( http: / / www.21cnjy.com )概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
8、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事 ( http: / / www.21cnjy.com )件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.21教育名师原创作品
9、B
【分析】
根据随机事件,必然事件,不可能事件的定义可 ( http: / / www.21cnjy.com )判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.21*cnjy*com
【详解】
解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;
事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;
某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;
图钉是不规则的物体,抛掷一枚图钉,“针尖 ( http: / / www.21cnjy.com )朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.
故选择B.
【点睛】
本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.
10、A
【分析】
根据概率公式计算即可.
【详解】
解:袋中装有3个红球和5个绿球共8个球,
从袋中随机摸出1个球是红球的概率为,
故选:A.
【点睛】
此题考查了概率的计算公式,正确掌握计算公式是解题的关键.
二、填空题
1、c>a>b
【分析】
根据概率公式分别求出各事件的概率,故可求解.
【详解】
依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,21cnjy.com
∵>>
∴a,b,c的大小关系是c>a>b
故答案为:c>a>b.
【点睛】
本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
2、
【分析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.
【详解】
解:小明和小强玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
( http: / / www.21cnjy.com / )
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小强平局的概率为:,
故答案为:.
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
3、
【分析】
利用概率公式直接求解即可.
【详解】
解:∵袋中有形状材料均相同的白球2个, 红球4个,共6个球,
∴任意摸一个球是红球的概率 .
故答案为:.
【点睛】
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21教育网
4、
【分析】
根据列表法求概率即可.
【详解】
解:设跳绳、长跑、游泳三个项目分别为A,B,C,列表如下,
A B C
A AA AB AC
B BA BB BC
C CA CB CC
共有9种等可能结果,小东和小华都抽到游泳项目只有1种结果,则
小东和小华都抽到游泳项目的概率为
故答案为:
【点睛】
本题考查了列表法求概率,掌握列表法求概率是 ( http: / / www.21cnjy.com )解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.
5、
【分析】
画树状图表示所有等可能的结果,再计算点在直线上的概率.
【详解】
解:画树状图为:
( http: / / www.21cnjy.com / )
共有36种机会均等的结果,其中组成有序实数对,则点在直线上的有4种,所以点在直线上的概率为,
故答案为:.
【点睛】
本题考查用树状图或列表法表示概率,是重要考点,难度较小,掌握相关知识是解题关键.
三、解答题
1、(1);(2)李老师和王老师被分配到同一个监督岗的概率为.
【分析】
(1)直接利用概率公式计算;
(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.21世纪教育网版权所有
【详解】
解:(1)因为设立了四个“服务监督岗 ( http: / / www.21cnjy.com )”: “洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,2-1-c-n-j-y
∴王老师被分配到“就餐监督岗”的概率=;
故答案为:;
(2)画树状图为:
( http: / / www.21cnjy.com / )
由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,
∴李老师和王老师被分配到同一个监督岗的概率==.
【点睛】
本题考查了列举法求解概率,列 ( http: / / www.21cnjy.com )表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
2、 (1)随机;(2)见解析
【分析】
(1)根据随机事件、不可能事件及必然事件的概念求解即可;
(2)画树状图,得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可.
【详解】
(1)根据随机事件的概念,A志愿者被选中是随机事件上,
故答案为:随机.
(2) ( http: / / www.21cnjy.com / )
由上述树状图可知:所有可能出现的结果共有12种,并且每一个结果出现的可能性相同.其中A,B两名志愿者同时被选中的有2种.【版权所有:21教育】
∴P(A,B两名志愿者同时被选中)=
【点睛】
此题考查的是用列表法或树状图法求概 ( http: / / www.21cnjy.com )率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
3、,验证过程见解析
【分析】
首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案.
【详解】
活动1:
红球1 红球2 白球
红球1 (红1,红2) (红1,白)
红球2 (红2,红1) (红2,白)
白球 (白,红1) (白,红2)
∵共有6种等可能的结果,摸到两个红球的有2种情况,
∴摸出的两个球都是红球的概率记为
活动2:
红球1 红球2 白球
红球1 (红1,红1) (红1,红2) (红1,白)
红球2 (红2,红1) (红2,红2) (红2,白)
白球 (白,红1) (白,红2) (白,白)
∵共有9种等可能的结果,摸到两个红球的有4种情况,
∴摸出的两个球都是红球的概率记为

【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.重点需要注意球放回与不放回的区别.21·cn·jy·com
4、(1)抽中多接口优盘的概率为;(2)P(抽中商品总价值不低于80元).
【分析】
(1)利用列举法求解即可;
(2)先用列表法或树状图法得出所有的等可能的结果数,然后找到总价值不低于80元商品的结果数,最后根据概率公式求解即可.www-2-1-cnjy-com
【详解】
解:(1)∵随机抽取一个盲盒可 ( http: / / www.21cnjy.com )以抽到蓝牙耳机,多接口优盘1,多接口优盘2,迷你音箱,一共4种等可能性的结果,其中抽到多接口优盘的结果数有2种,【出处:21教育名师】
∴抽到多接口优盘;
(2)将蓝牙耳机记为A,多接口U盘记为、,迷你音箱记作C.
则从4个盲盒中随机抽取2个的树状图如下:
( http: / / www.21cnjy.com / )
由上图可知,随机抽两个盲盒,所获商品可能出现的结果有12种,它们出现的可能性相等,其中抽中商品总价值不低于80元的结果有8种.
∴P(抽中商品总价值不低于80元).
【点睛】
本题主要考查了列举法求解概率,树状图或列表法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.
5、不公平,小林获胜的机会大
【分析】
根据题意列出图表得出所有等可能的结果数和颜色相同和不同的结果数,然后根据概率公式求出各自的概率,再进行比较即可得出这个游戏是否公平.
【详解】
解:列表如下:
( http: / / www.21cnjy.com / )
由上表或可知,一共有9种等可能的结果,其中颜色相同的结果有4种,颜色不同的结果有5种.
∴P(颜色相同)=,P(颜色不同)=,
∵<,
∴这个游戏规则对双方不公平,小林获胜的机会大.
【点睛】
本题考查的是游戏公平性的判断.判断游 ( http: / / www.21cnjy.com )戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)