【强化训练】沪教版(上海)八下 第二十三章概率初步同步训练试题(含解析)

文档属性

名称 【强化训练】沪教版(上海)八下 第二十三章概率初步同步训练试题(含解析)
格式 doc
文件大小 1.6MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-26 09:34:21

图片预览

文档简介

中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应 ( http: / / www.21cnjy.com )的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。2-1-c-n-j-y
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( ).
A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件
B.“打开电视机,正在播放乒乓球比赛”是必然事件
C.“面积相等的两个三角形全等”是不可能事件
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次
2、布袋内装有1个黑球和2个白球,这些 ( http: / / www.21cnjy.com )球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是(  )21*cnjy*com
A. B. C. D.
3、关于“明天是晴天的概率为90%”,下列说法正确的是( ).
A.明天一定是晴天 B.明天一定不是晴天
C.明天90%的地方是晴天 D.明天是晴天的可能性很大
4、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是( )
A. B. C. D.
5、把形状完全相同风景不同的 ( http: / / www.21cnjy.com )两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )
A. B. C. D.
6、下列事件是必然事件的是(  )
A.抛一枚硬币正面朝上
B.若a为实数,则a2≥0
C.某运动员射击一次击中靶心
D.明天一定是晴天
7、下列事件中是不可能事件的是(  )
A.铁杵成针 B.水滴石穿 C.水中捞月 D.百步穿杨
8、某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是(  )
( http: / / www.21cnjy.com / )
A.从标有1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数
B.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
D.掷一个质地均匀的正六面体骰子,向上的面点数是4
9、在一个不透明的袋中装有仅颜色不同的白球和 ( http: / / www.21cnjy.com )红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:21cnjy.com
摸球次数 10 40 80 200 500 800
摸到红球次数 3 16 20 40 100 160
摸到红球的频率 0.3 0.4 0.25 0.2 0.2 0.2
则袋中的红球个数可能有(  )
A.16个 B.8个 C.4个 D.2个
10、下列说法正确的有( )
①等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形.
②无理数在和之间.
③从,,,,这五个数中随机抽取一个数,抽到无理数的概率是.
④一元二次方程有两个不相等的实数根.
⑤若边形的内角和是外角和的倍,则它是八边形.
A.个 B.个 C.个 D.个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个密闭不透明的盒子里装有若干个质地 ( http: / / www.21cnjy.com )、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________.
2、某班共有36名同学,其中男 ( http: / / www.21cnjy.com )生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.
3、大数据分析技术为打赢疫 ( http: / / www.21cnjy.com )情防控阻击战发挥了重要作用.如图是小明同学的吉祥码示意图,用黑白打印机打印在边长为2cm的正方形区域内,图中黑色部分的总面积为2.4cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为 _____.
( http: / / www.21cnjy.com / )
4、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.
5、已知盒子里有6个黑色球和n个红色球,每个球除颜色外均相同,现蒙眼从中任取一个球,取出红色球的概率是,则n是______.
三、解答题(5小题,每小题10分,共计50分)
1、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习.用列表法或画树状图法求:
(1)甲、乙都选择(窗花剪纸)课程的概率;
(2)甲、乙选择同一门课程的概率.
2、苗木种植不仅绿了家园 ( http: / / www.21cnjy.com ),助力脱贫攻坚,也成为乡村增收致富的“绿色银行”.小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:
移植棵数() 成活数() 成活率() 移植棵数() 成活数() 成活率()
50 47 0.940 1500 1335 0.890
270 235 0.870 3500 3203 0.915
400 369 0.923 7000 6335
750 662 0.883 14000 12628 0.902
根据以上信息,回答下列问题:
(1)当移植的棵数是7000时,表格记录成活数是________,那么成活率是________
(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是________21世纪教育网版权所有
(3)若小王移植10000棵这种树苗,则可能成活________;
(4)若小王移植20000棵这种树苗,则一定成活18000棵.此结论正确吗?说明理由.
3、不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.
(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
4、有甲、乙两个不透明的口袋,甲口袋中装有两个相同的球,它们分别写有数,2;乙口袋中装有三个相同的球,它们分别写有数,,5.小明和小刚进行摸球游戏,规则如下:先从甲口袋中随机取出一个球,其上的数记为;再从乙口袋中随机取出一个球,其上的数记为.若,小明胜;若,为平局;若,小刚胜.
(1)若,用树状图或列表法分别求出小明、小刚获胜的概率;
(2)当为何值时,小明和小刚获胜的概率相同?直接写出一个符合条件的整数的值.
5、在一个不透明的盒子里有红球 ( http: / / www.21cnjy.com )、黄球、绿球各一个,它们除了颜色外其余都相同,小颖从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图法,求小颖两次摸出的球颜色相同的概率.
-参考答案-
一、单选题
1、A
【分析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件.
【详解】
解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;
B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;
C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;
D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;
故选:A.
【点睛】
本题考查了必然事件,解决本题需要正确理解必然 ( http: / / www.21cnjy.com )事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.21*cnjy*com
2、B
【分析】
先画出树状图,再根据概率公式即可完成.
【详解】
所画树状图如下:
( http: / / www.21cnjy.com / )
事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:
故选:B
【点睛】
本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.【版权所有:21教育】
3、D
【分析】
根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得.
【详解】
解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,
故选:D.
【点睛】
题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键.
4、A
【分析】
如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案.21教育网
【详解】
解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,
骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,
所以骰子落地时朝上的数为偶数的概率是
故选A
【点睛】
本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.
5、B
【分析】
设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.
【详解】
解:设四张小图片分别用A,a,B,b表示,画树状图得:
( http: / / www.21cnjy.com / )
由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,
∴摸取两张小图片恰好合成一张完整图片的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.
6、B
【分析】
根据必然事件的定义对选项逐个判断即可.
【详解】
解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;
B、若a为实数,则a2≥0,是必然事件,符合题意;
C、某运动员射击一次击中靶心,是随机事件,不符合题意;
D、明天一定是晴天,是随机事件,不符合题意,
故选:B
【点睛】
本题主要考查了必然事件的 ( http: / / www.21cnjy.com )定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键.
7、C
【分析】
根据随机事件,必然事件和不可能事件的定义,逐项即可判断.
【详解】
A、铁杵成针,一定能达到,是必然事件,故选项不符合;
B、水滴石穿, 一定能达到,是必然事件,故选项不符合;
C、水中捞月,一定不能达到,是不可能事件,故选项符合;
D、百步穿杨,不一定能达到,是随机事件,故选项不符合;
故选:C
【点睛】
本题考查了随机事件,必然事件,不 ( http: / / www.21cnjy.com )可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、B
【分析】
由图象可知,该实验的概率趋近于0.3-0.4之间,依次判断选项所对应实验的概率即可.
【详解】
A.从标有1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数,概率为,选项与题意不符,故错误.21·cn·jy·com
B.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球,概率为,选项与题意符合,故正确.
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃,选项与题意不符,故错误.
D.掷一个质地均匀的正六面体骰子,向上的面点数是4,概率为,选项与题意不符,故错误.
故选:B
【点睛】
本题考察了用频率估计概率,当实验次数足够多 ( http: / / www.21cnjy.com )时,出现结果的频率可以看作是该结果出现的概率,本题通过图象可以估计出概率的范围,再依次判断各选项即可.
9、C
【分析】
首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.
【详解】
解:∵摸球800次红球出现了160次,
∴摸到红球的概率约为,
∴20个球中有白球20×=4个,
故选:C.
【点睛】
本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.
10、A
【分析】
根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案.
【详解】
解:菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;
无理数在和之间,正确,故本选项符合题意;
在,,,,这五个数中,无理数有,,共个,则抽到无理数的概率是,故本选项错误,不符合题意;
因为,则一元二次方程有两个相等的实数根,故本选项错误,不符合题意;
若边形的内角和是外角和的倍,则它是八边形,正确,故本选项符合题意;
正确的有个;
故选:.
【点睛】
此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键.2·1·c·n·j·y
二、填空题
1、
【分析】
可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.
【详解】
解:∵共摸球4000次,其中800次摸到黑球,
∴从中随机摸出一个球是黑球的概率为,
故答案为:
【点睛】
考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
2、c>a>b
【分析】
根据概率公式分别求出各事件的概率,故可求解.
【详解】
依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,
∵>>
∴a,b,c的大小关系是c>a>b
故答案为:c>a>b.
【点睛】
本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
3、
【分析】
根据几何概率的求解方法:用黑色区域的面积除以正方形面积即可得到答案.
【详解】
解:由题意得:点落入黑色部分的概率为,
故答案为:.
【点睛】
本题主要考查了几何概率,解题的关键在于能够熟练掌握几何概率的求解方法.
4、##
【分析】
用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.
【详解】
解:根据题意,可能出现的情况有:
红球;红球;红球;黑球;黑球;
则恰好是红球的概率是,
故答案为:.
【点睛】
本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.
5、6
【分析】
根据概率公式计算即可;
【详解】
由题可得,取出红色球的概率是,
∴,
∴,
经检验,是方程的解;
故答案是:6.
【点睛】
本题主要考查了概率公式的应用和分式方程求解,准确计算是解题的关键.
三、解答题
1、(1) ;(2)
【分析】
(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;【来源:21·世纪·教育·网】
(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.
【详解】
解:(1)由题意列表,
A B C D
A A,A A,B A,C A,D
B B,A B,B B,C B,D
C C,A C,B C,C C,D
D D,A D,B D,C D,D
由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,
所以甲、乙都选择(窗花剪纸)课程的概率为.
(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,
所以甲、乙选择同一门课程的概率为.
【点睛】
本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.www.21-cn-jy.com
2、
(1)6335;0.905;
(2)0.900;
(3)9000棵;
(4)此结论不正确,理由见解析
【分析】
(1)根据表格中的数据求解即可;
(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;21·世纪*教育网
(3)利用成活数=总数×成活概率即可得到答案;
(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案.www-2-1-cnjy-com
(1)
解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,
∴成活率,
故答案为:6335;0.905;
(2)
解:∵大量重复试验下,频率的稳定值即为概率值,
∴可以估计树苗成活的概率是0.900,
故答案为:0.900;
(3)
解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,
故答案为:9000棵;
(4)
解:若小王移植20000棵这种树苗,则一定成活18000棵.此结论不正确,理由如下:
∵概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,
∴若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵.
【点睛】
本题考查利用频率估计概率,解答本题的 ( http: / / www.21cnjy.com )关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.21教育名师原创作品
3、(1)袋中黄球的个数为1个;(2)
【分析】
(1)袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;
(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.;【出处:21教育名师】
【详解】
解:(1)设袋中黄球的个数为x个,
根据题意得,
解得x=1,
经检验,x=1是方程的根,
所以袋中黄球的个数为1个;
(2)画树状图为:
共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,
所以两次摸出的都是红球的概率.
【点睛】
本题主要考查了概率公式的应用,树状图求概率,分式方程的计算,准确计算是解题的关键.
4、(1)见详解;(2)m=-1
【分析】
(1)先画出树状图,再利用概率公式计算,即可求解;
(2)取一个符合条件的m的值,即可.
【详解】
解:(1)画树状图如下:
( http: / / www.21cnjy.com / )
∵一共有6种可能的结果,,有2种可能,,有3种可能,
∴小明获胜的概率=2÷6=,小刚获胜的概率=3÷6=;
(2)当m=-1时,画树状图如下:
( http: / / www.21cnjy.com / )
此时,小明和小刚获胜的概率相同.
【点睛】
本题主要考查等可能时间的概率,掌握画树状图是解题的关键.
5、
【分析】
画树状图,共有9种等可能的结果,小颖两次摸出的球颜色相同的结果有3个,再由概率公式求解即可.
【详解】
解:画树状图如下:
( http: / / www.21cnjy.com / )
共有9种等可能的结果,小颖两次摸出的球颜色相同的结果有3个,
小颖两次摸出的球颜色相同的概率为.
【点睛】
本题考查的是用树状图法求概率,解题的关键是要注意此题是放回试验还是不放回试验.用到的知识点为:概率所求情况数与总情况数之比.【来源:21cnj*y.co*m】
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)