中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应 ( http: / / www.21cnjy.com )的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21世纪教育网版权所有
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个不透明的袋子中装有四个小球,它们除了 ( http: / / www.21cnjy.com )分别标有的数字1,2,3,6不同外,其他完全相同,任意从袋子中摸出一球后不放回,再任意摸出一球,则两次摸出的球所标数字之积为6的概率是( )
A. B. C. D.
2、下列事件中,属于随机事件的是( )
A.用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形
B.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
C.如果一个三角形有两个角相等,那么两个角所对的边也相等
D.有两组对应边和一组对应角分别相等的两个三角形全等
3、下列事件,你认为是必然事件的是( )
A.打开电视机,正在播广告
B.今天星期二,明天星期三
C.今年的正月初一,天气一定是晴天
D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的
4、下列成语描述的事件为随机事件的是( )
A.偷天换日 B.水涨船高 C.守株待兔 D.旭日东升
5、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )21·cn·jy·com
A. B. C. D.
6、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )www.21-cn-jy.com
A. B. C. D.
7、下列事件是必然事件的是( )
A.任意选择某电视频道,它正在播新闻联播
B.温州今年元旦当天的最高气温为15℃
C.在装有白色和黑色的袋中摸球,摸出红球
D.不在同一直线上的三点确定一个圆
8、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )
( http: / / www.21cnjy.com / )
A. B. C. D.
9、在一个不透明的袋中装有 ( http: / / www.21cnjy.com )仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:【来源:21·世纪·教育·网】
摸球次数 10 40 80 200 500 800
摸到红球次数 3 16 20 40 100 160
摸到红球的频率 0.3 0.4 0.25 0.2 0.2 0.2
则袋中的红球个数可能有( )
A.16个 B.8个 C.4个 D.2个
10、中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )21cnjy.com
( http: / / www.21cnjy.com / )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已如一个口袋中装有7个只有颜色不同 ( http: / / www.21cnjy.com )的球,其中3个白球,4个黑球.若往口袋中再放入2个白球,求从口袋中随机取出一个白球的概率________【版权所有:21教育】
2、在一个不透明的布袋中装 ( http: / / www.21cnjy.com )有红球、白球共20个,这些球除颜色外都相同.小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.65,则布袋中红球的个数大约是________.21教育名师原创作品
3、投掷一枚均匀的立方体骰子(六个面上分别标有1点,2点,……,6点),标有6点的面朝上的概率是________.21*cnjy*com
4、一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无差别,从中随机摸出一个小球,则摸到的是红球的概率为___.
5、现有四张分别标有数字﹣2,﹣1,0,2 ( http: / / www.21cnjy.com )的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色,请用画树状图(或列表)的方法,求一次摸出两个球“都是白球”的概率.
2、钟南山院士谈到防护新型冠状病毒 ( http: / / www.21cnjy.com )肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”学校为鼓励学生抗疫期间在家阅读,组织九年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.
( http: / / www.21cnjy.com / )
(1)本次共抽查学生______人,并将条形统计图补充完整;
(2)在九年级1000名学生中,读书15本及以上(含15本)的学生估计有多少人?
(3)在九年级六班共有50名 ( http: / / www.21cnjy.com )学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.
3、 “垃圾分类”进校园,锦江教育 ( http: / / www.21cnjy.com )出实招.锦江区编写小学生《垃圾分类校本实施指导手册》,给同学们介绍垃圾分类科学知识,要求大家将垃圾按A,B,C,D四类分别装袋投放.其中A类指有害垃圾,B类指厨余垃圾,C类指可回收垃圾,D类指其他垃圾.小明和小亮各有一袋垃圾,需投放到小区如图所示的垃圾桶.21教育网
(1)“小明投放的垃圾恰好是有害垃圾”这一事件是______.(请将正确答案的序号填写在横线上)
①必然事件 ②不可能事件 ③随机事件
(2)请用列表或画树状图的方法,求小明与小亮投放的垃圾是同类垃圾的概率.
A.有害垃圾 ( http: / / www.21cnjy.com / ) B.厨余垃圾 ( http: / / www.21cnjy.com / )
C.可回收垃圾 ( http: / / www.21cnjy.com / ) D.其他垃圾 ( http: / / www.21cnjy.com / )
4、在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.
(1)从中随机摸出一个小球,上面的数字不小于2的概率为 .
(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.
5、随着信息技术的迅猛发展,人们去商场购 ( http: / / www.21cnjy.com )物的支付方式更加多样、便捷.在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种支付方式中选一种方式进行支付,“微信”“支付宝”“银行卡”这三种支付方式分别用“A”“B”“C”表示,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
-参考答案-
一、单选题
1、D
【分析】
先列表展示所有可能的结果数为12,再找出两次摸出的球所标数字之积为6的结果数,然后根据概率的概念计算即可.
【详解】
解:列表如下:
( http: / / www.21cnjy.com / )
所有等可能的情况有12种,其中两次摸出的球所标数字之积为6的有4种结果,
所以两次摸出的球所标数字之积为6的概率为=.
故答案为:D
【点睛】
此题考查的是用列表法或树状图 ( http: / / www.21cnjy.com )法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
2、D
【分析】
根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项.
【详解】
A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;www-2-1-cnjy-com
B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;
C.因为三角形有两个角相等则这个三角形是 ( http: / / www.21cnjy.com )等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;
D.根据SAS可以判断两 ( http: / / www.21cnjy.com )三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确.
故选:D.
【点睛】
本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键.
3、B
【分析】
必然事件就是一定发生的事件,依据定义即可作出判断.
【详解】
解:A、是随机事件,故此选项不符合题意;
B、是必然事件,故此选项符合题意;
C、是随机事件,故此选项不符合题意;
D、是随机事件,故此选项不符合题意;.
故选:B.
【点睛】
解决本题需要正确理解必然事件、不可能事件、 ( http: / / www.21cnjy.com )随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、C
【分析】
根据随机事件的定义:在一定条件下,可能发生,也可能不发生的事件,叫做随机事件,进行求解即可.
【详解】
解:A、偷天换日,是不可能发生的,不是随机事件,不符合题意;
B、水涨必定船高,是必然会发生,不是随机事件,不符合题意;
C、守株待兔,可能发生,也可能不发生,是随机事件,符合题意;
D、旭日东升,是必然会发生的,不是随机事件,不符合题意;
故选C.
【点睛】
本题主要考查了随机事件的定义,熟知定义是解题的关键.
5、B
【分析】
由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.
【详解】
解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,
∴从袋中任意摸出一个球,摸出的球是红球的概率是:.
故选:B.
【点睛】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
6、C
【分析】
用绿灯亮的时间除以三种灯亮总时间即可解答.
【详解】
解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,
所以绿灯的概率是:.
故选C.
【点睛】
本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.
7、D
【分析】
由题意依据必然事件指在一定条件下一定发生的事件逐项进行判断即可.
【详解】
解:A. 任意选择某电视频道,它正在播新闻联播,是随机事件,选项不符合;
B. 温州今年元旦当天的最高气温为15℃,是随机事件,选项不符合;
C. 在装有白色和黑色的袋中摸球,摸出红球,是不可能事件,选项不符合;
D. 不在同一直线上的三点确定一个圆,是必然事件,选项符合.
故选:D.
【点睛】
本题考查确定事件和不确定 ( http: / / www.21cnjy.com )事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.21*cnjy*com
8、B
【分析】
由题意,只要求出阴影部分与矩形的面积比即可.
【详解】
解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,
由几何概型公式得到最终停在阴影方砖上的概率为:;
故选:B.
【点睛】
本题将概率的求解设置于黑白方砖中,考查 ( http: / / www.21cnjy.com )学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.
9、C
【分析】
首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.
【详解】
解:∵摸球800次红球出现了160次,
∴摸到红球的概率约为,
∴20个球中有白球20×=4个,
故选:C.
【点睛】
本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.
10、C
【分析】
用“---”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案.
【详解】
解:观察“馬”移动一次能够到达的所有位置,即用“●”标记的有8处,
位于“---”(图中虚线)的上方的有2处,
所以“馬”随机移动一次,到达的位置在“---”上方的概率是,
故选:C.
【点睛】
本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
二、填空题
1、
【分析】
先确定口袋中的球数,任意取出一个,求出等可能的所有情况,再从中找出满足条件的白球的可能情况,让后利用概率公式计算即可.
【详解】
解:往口袋中再放入2个白 ( http: / / www.21cnjy.com )球,此时口袋中一共有球9个,任取一个球出现等可能情况一共有9中可能,其中有白球5个,任取一个球是白球的共有5中情况,
∴从口袋中随机取出一个白球的概率P=,
故答案为:.
【点睛】
本题考查列举法求简单概率,掌握列举法求简单概率,抓住列举所有等可能情况,与满足条件的情况,记住概率公式是解题关键.
2、13
【分析】
总数量乘以摸到红球的频率的稳定值即可.
【详解】
解:根据题意知,布袋中红球的个数大约是20×0.65=13,
故答案为:13.
【点睛】
本题主要考查利用频率估计概 ( http: / / www.21cnjy.com )率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
3、
【分析】
让朝上一面的数字是6的情况数除以总情况数6即为所求的概率.
【详解】
解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为6点的只有1种,
∴朝上一面的数字为6点的概率为,
故答案为:.
【点睛】
此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.
4、
【分析】
将红球的个数除以球的总个数即可得.
【详解】
解:根据题意,摸到的不是红球的概率为,
答案为:.
【点睛】
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
5、
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知,一共有16中等可能性的 ( http: / / www.21cnjy.com )结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,
∴P两次抽出的卡片上所标数字之和为正数,
故答案为:.
【点睛】
本题主要考查了列表法或树状图法求概率.解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比.
三、解答题
1、
【分析】
根据题意用列表法列出所有等可能的情况,找出两个球“都是白球”的情况,然后根据概率公式求解即可.
【详解】
解:由题意可得,所有等可能的情况如下:
白色1 白色2 红色
白色1 (白色2,白色1) (红色,白色1)
白色2 (白色1,白色2) (红色,白色2)
红色 (白色1,红色) (白色2,红色)
由表格可知,共有6种等可能的情况,其中两个球“都是白球”的有2种情况,
∴一次摸出两个球“都是白球”的概率=.
【点睛】
本题考查的是用列表法或画树状图法求概率 ( http: / / www.21cnjy.com ).解题的关键是熟练掌握列表法或画树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
2、(1)50,图见解析;(2)500人;(3)图表见解析,
【分析】
(1)由题意根据C的人数和所占的百分比,可以求得本次共抽查学生人数,然后即可计算出读书10本的人数,从而可以将条形统计图补充完整;2·1·c·n·j·y
(2)由题意根据条形统计图中的数据,可以计算出读书15本及以上(含15本)的学生估计有多少人;
(3)根据题意,可以画出相应的树状图,从而可以求出恰好是两位男生分享心得的概率.
【详解】
解:(1)本次共抽查学生14÷28%=50(人),
故答案为:50;
50-9-14-7-4=16(人),
补全的条形统计图如图所示,
( http: / / www.21cnjy.com / )
(2)(人),
即读书15本及以上(含15本)的学生估计有500人.
(3)树状图如下图所示,
( http: / / www.21cnjy.com / )
一共有12种可能性,其中恰好是两位男生可能性有2种,
故恰好是两位男生分享心得的概率是.
【点睛】
本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.【出处:21教育名师】
3、
(1)③
(2)
【分析】
(1)根据随机事件的相关概念可直接进行求解;
(2)根据列表法可直接进行求解概率.
(1)
解:“小明投放的垃圾恰好是有害垃圾”这一事件是随机事件;
故答案为③;
(2)
解:列表如下:
A B C D
A (A,A) (A,B) (A,C) (A,D)
B (B,A) (B,B) (B,C) (B,D)
C (C,A) (C,B) (C,C) (C,D)
D (D,A) (D,B) (D,C) (D,D)
由上表可知,共有16种等可能情况,其中两人投放同种垃圾的有(A,A),(B,B),(C,C),(D,D)共4种.21·世纪*教育网
∴.
【点睛】
本题主要考查随机事件及概率,熟练掌握利用列表法求解概率是解题的关键.
4、(1);(2)
【分析】
(1)列表确定出所有等可能的情况数,找出小球上写的数字不小于2的情况数,即可求出所求概率;
(2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是奇数的情况数,即可求出所求概率.2-1-c-n-j-y
【详解】
解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,
其中数字不小于2的情况有:2,3,4,共3种,
则P(小球上写的数字不小于2)=;
故答案为:;
(2)根据题意列表得:
1 2 3 4
1 ﹣﹣﹣ (1,2) (1,3) (1,4)
2 (2,1) ﹣﹣﹣ (2,3) (2,4)
3 (3,1) (3,2) ﹣﹣﹣ (3,4)
4 (4,1) (4,2) (4,3) ﹣﹣﹣
所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,
则P(两次摸出小球上的数字和恰好是奇数)==.
故答案为:
【点睛】
本题考查了概率公式,学会利用列表法与树状图法求随机事件的概率是解本题的关键.
5、
【分析】
根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.【来源:21cnj*y.co*m】
【详解】
解:画树状图如下:
( http: / / www.21cnjy.com / )
∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,
∴两人恰好选择同一种支付方式的概率为.
【点睛】
本题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)