中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目 ( http: / / www.21cnjy.com )指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21cnjy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件为必然事件的是
A.打开电视机,正在播放新闻 B.掷一枚质地均匀的硬币,正面儿朝上
C.买一张电影票,座位号是奇数号 D.任意画一个三角形,其内角和是180度
2、假如每个鸟卵都可以成功孵化小 ( http: / / www.21cnjy.com )鸟,且孵化出的小鸟是雄性和雌性的可能性相等.现有2枚鸟卵,孵化出的小鸟恰有一个雌性一个雄性的概率是( )2-1-c-n-j-y
A. B. C. D.
3、某学校九年级为庆祝建党一百周年举 ( http: / / www.21cnjy.com )办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )21*cnjy*com
A.一班抽到的序号小于6 B.一班抽到的序号为9
C.一班抽到的序号大于0 D.一班抽到的序号为7
4、下列说法中,正确的是( )
A.“射击运动员射击一次,命中靶心”是必然事件
B.事件发生的可能性越大,它的概率越接近1
C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖
D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得
5、下列说法正确的是( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.“心想事成,万事如意”描述的事件是随机事件
D.天气预报显示明天为阴天,那么明天一定不会下雨
6、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )【版权所有:21教育】
( http: / / www.21cnjy.com / )
A.掷一枚正六面体的骰子,出现1点的概率
B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率
7、有四张形状相同的卡片,正 ( http: / / www.21cnjy.com )面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )21·cn·jy·com
A. B. C. D.1
8、小张同学去展览馆看展览,该展览馆有A、 ( http: / / www.21cnjy.com )B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是( )
A. B. C. D.
9、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶10000km,从未出现故障”是不可能事件
C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
10、下列事件中,属于必然事件的是( )
A.13人中至少有2个人生日在同月
B.任意掷一枚质地均匀的硬币,落地后正面朝上
C.从一副扑克牌中随机抽取一张,抽到的是红桃A
D.以长度分别是3cm,4cm,6cm的线段为三角形三边,能构成一个直角三角形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个不透明的袋子中装有红球、黄球 ( http: / / www.21cnjy.com )共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _____个.【来源:21cnj*y.co*m】
2、时隔十三年,奥运圣火 ( http: / / www.21cnjy.com )再次在北京点燃.北京将首次举办冬奥会,成为国际上唯一举办过夏季和冬季奥运会的“双奥之城”.墩墩和融融积极参加雪上项目的训练,现有三辆车按照1,2,3编号,两人可以任选坐一辆车去训练,则两人同坐2号车的概率是________.
3、在一个不透明的布袋中, ( http: / / www.21cnjy.com )黄色、红色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是___个.
4、一个密闭不透明的盒子里装有若干个质 ( http: / / www.21cnjy.com )地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________.
5、只有1和它本身两个因数 ( http: / / www.21cnjy.com )且大于1的自然数叫做质数,我国数学家陈景润在有关质数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从3,5,7,11,13,23这6个质数中随机抽取一个,则抽到个位数是3的可能性是________.
三、解答题(5小题,每小题10分,共计50分)
1、一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同.
(1)如果从中随机摸出一个小球,请直接写出摸到蓝色小球的概率是 .
(2)小王和小李玩摸球游戏,游戏规则 ( http: / / www.21cnjy.com )如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.
2、我市举行了某学科实验操作考试 ( http: / / www.21cnjy.com ),有A,B,C,D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王、小张、小厉都参加了本次考试.
(1)小厉参加实验D考试的概率是______;
(2)用列表或画树状图的方法求小王、小张抽到同一个实验的概率.
3、如图,某校开设了A、B、C三个测温通道.某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
(1)小明从A测温通道通过的概率是 ;
(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
( http: / / www.21cnjy.com / )
4、从1名男生和3名女生中随机抽取参加2022年北京冬季奥运会的志愿者.
(1)抽取2名,求恰好都是女生的概率;
(2)抽取3名,恰好都是女生的概率是 .
5、新高考“3+1+2”是指:3,语数外三 ( http: / / www.21cnjy.com )科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科.某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率.
-参考答案-
一、单选题
1、D
【分析】
根据事件发生的可能性大小判断即可.
【详解】
A、打开电视机,正在播放新闻,是随机事件,不符合题意;
B、掷一枚质地均匀的硬币,正面朝上,是随机事件,不符合题意;
C、买一张电影票,座位号是奇数号,是随机事件,不符合题意;
D、任意画一个三角形,其内角和是180°,是必然事件,符合题意;
故选:D.
【点睛】
本题考查的是必然事件、不可能事件、随机事 ( http: / / www.21cnjy.com )件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、D
【分析】
用A表示雄性,B表示雌性,画出树状图,共有4个等可能的结果,孵化出的小鸟恰有两个雌性一个雄性的结果有2个,然后根据概率公式计算即可.21教育名师原创作品
【详解】
解:用A表示雄性,B表示雌性,画树状图如图:
( http: / / www.21cnjy.com / )
共有4个等可能的结果,孵化出的小鸟恰有一个雌性一个雄性的结果有2个,
∴孵化出的小鸟恰有两个雌性一个雄性的概率为;
故选:D.
【点睛】
本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
3、C
【分析】
必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.
【详解】
解:A中一班抽到的序号小于是随机事件,故不符合要求;
B中一班抽到的序号为是不可能事件,故不符合要求;
C中一班抽到的序号大于是必然事件,故符合要求;
D中一班抽到的序号为是随机事件,故不符合要求;
故选C.
【点睛】
本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.
4、B
【分析】
根据随机事件,必然事件,不可 ( http: / / www.21cnjy.com )能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.21·世纪*教育网
【详解】
解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;
事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;
某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;
图钉是不规则的物体,抛掷一枚图钉,“针尖朝上 ( http: / / www.21cnjy.com )”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.
故选择B.
【点睛】
本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.
5、C
【详解】
解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;
C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;
D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;
故选:C
【点睛】
本题考查的是对随机事件和必 ( http: / / www.21cnjy.com )然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
6、B
【分析】
根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
【详解】
解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;
B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;
C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;
D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.
故选:B.
【点睛】
此题考查了利用频率估计概率, ( http: / / www.21cnjy.com )大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.
7、C
【分析】
先判断出矩形、菱形、等边三角形 ( http: / / www.21cnjy.com )、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.【来源:21·世纪·教育·网】
【详解】
解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;
则P(中心对称图形)=;
故选:C.
【点睛】
本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.
8、D
【分析】
先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可.
【详解】
解:列树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,
∴P小张从不同的出入口进出的结果数,
故选D.
【点睛】
本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率.
9、D
【分析】
根据随机事件的定义,对选项中的事件进行判断即可.
【详解】
解:A.“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;
B.“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;
C.“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;www.21-cn-jy.com
D.“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键.
10、A
【分析】
根据确定事件和随机事件的定义来区分判断即可, ( http: / / www.21cnjy.com )必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
解:A. 13人中至少有2个人生日在同月,是必然事件,故该选项符合题意;
B. 任意掷一枚质地均匀的硬币,落地后正面朝上,是随机事件,故该选项不符合题意;
C. 从一副扑克牌中随机抽取一张,抽到的是红桃A,是随机事件,故该选项不符合题意;
D. 因为,则以长度分别是3cm,4cm,6cm的线段为三角形三边,能构成一个直角三角形,是不可能事件,故该选项不符合题意;2·1·c·n·j·y
故选A
【点睛】
本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.
二、填空题
1、6
【分析】
由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数.
【详解】
解:由题意可得,
20×0.30=6(个),
即袋子中黄球的个数最有可能是6个.
故答案为:6.
【点睛】
本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数.
2、
【分析】
先画树状图得到所有的等可能性的结果数,然后找到两人同坐2号车的结果数,再依据概率公式求解即可.
【详解】
解:列树状图如下:
( http: / / www.21cnjy.com / )
由树状图可知一共有9种等可能性的结果数,其中两人同坐2号车的结果数为1种,
∴两人同坐2号车的概率,
故答案为:.
【点睛】
本题主要考查了树状图法或列表法求解概率,熟知树状图或列表法求解概率是解题的关键.
3、4
【分析】
设出黄球的个数,根据黄球的频率求出黄球的个数即可解答.
【详解】
设黄球的个数为x,
∵共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,
∴,
解得:,
∴布袋中红色球的个数很可能是(个).
故答案为:4.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程.21*cnjy*com
4、
【分析】
可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.
【详解】
解:∵共摸球4000次,其中800次摸到黑球,
∴从中随机摸出一个球是黑球的概率为,
故答案为:
【点睛】
考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
5、
【分析】
先利用列举法求出个位数字是3的所有结果数,然后利用概率公式求解即可.
【详解】
解:从3,5,7,11,13,23这6个质数中随机抽取一个数一共有6种等可能性的结果数,其中抽到个位是3的有3,13,23三种结果数,
∴抽到个位数字是3的概率是,
故答案为:.
【点睛】
本题主要考查了概率的计算,熟练掌握列举法进行概率的计算是解决本题的关键.
三、解答题
1、(1);(2)这个游戏对双方不公平,理由见解析
【分析】
(1)摸出一个球只有红球、蓝球或黄球三种结果,由此即可求解;
(2)先列树状图得到,所有的等可能性结果数,然后分别找到颜色相同和颜色不同的结果数,进行求解即可.
【详解】
解:(1)∵一个袋子中装有红、黄、蓝三个小球,
∴从中随机摸出一个球的结果可以为:红球、蓝球或黄球三种结果,
∴P摸到蓝色小球的概率;
故答案为:;
(2)树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知一共有9种等可能性的结果,其中两个小球颜色相同的结果数有3种,两个小球颜色不同的结果数有6种,.
∴这个游戏对双方不公平.
【点睛】
本题主要考查了用列举法求解概率,用树状图或列表法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.
2、
(1)
(2)
【分析】
(1)根据概率公式即可得;
(2)列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.
(1)
解:小厉参加实验考试的概率是,
故答案为:;
(2)
解:列表如下:
所有等可能的情况有16种,其中两位同学抽到同一实验的情况有,,,,4种情况,
所以小王、小张抽到同一个实验的概率为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.www-2-1-cnjy-com
3、(1);(2)小明和小丽从同一个测温通道通过的概率为.
【分析】
(1)直接根据概率公式求解即可;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】
解:(1)小明从A测温通道通过的概率是,
故答案为:;
(2)根据题意列表如下:
A B C
A AA BA CA
B AB BB CB
C AC BC CC
由表可知,共有9种等可能结果,其中小明和小丽从同一个测温通道通过的有3种结果,
则小明和小丽从同一个测温通道通过的概率为=.
【点睛】
本题考查的是用列表法或树状图法求概 ( http: / / www.21cnjy.com )率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.21教育网
4、(1);(2)
【分析】
(1)利用列表法进行求解即可;
(2)利用树状图的方法列出所有可能的情况,再求解即可.
【详解】
解:(1)列表如下:
男 女1 女2 女3
男 (女1,男) (女2,男) (女3,男)
女1 (男,女1) (女2,女1) (女3,女1)
女2 (男,女2) (女1,女2) (女3,女2)
女3 (男,女3) (女1,女3) (女2,女3)
由表格知,共有12种等可能性结果,其中满足“都是女生”(记为事件A)的结果只有6种,
∴抽取2名,恰好都是女生的概率;
(2)列树状图如下:
( http: / / www.21cnjy.com / )
由树状图可知,共有24种等可能性结果,其中满足“恰好都是女生”(记为事件B)的结果只有6种,
∴抽取3名,恰好都是女生的概率,
故答案为:.
【点睛】
本题考查列树状图或表格法求概率,掌握列树状图或表格的方法,做到不重不漏的列出所有情况是解题关键.
5、
【分析】
用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解.
【详解】
解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,
( http: / / www.21cnjy.com / ),
由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=.21世纪教育网版权所有
【点睛】
本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.【出处:21教育名师】
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)