【强化训练】沪教版(上海)八下 第二十三章 概率初步定向训练题(含解析)

文档属性

名称 【强化训练】沪教版(上海)八下 第二十三章 概率初步定向训练题(含解析)
格式 doc
文件大小 1.7MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-08-26 11:38:12

图片预览

文档简介

中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目 ( http: / / www.21cnjy.com )指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。www.21-cn-jy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于“明天是晴天的概率为90%”,下列说法正确的是( ).
A.明天一定是晴天 B.明天一定不是晴天
C.明天90%的地方是晴天 D.明天是晴天的可能性很大
2、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )21·世纪*教育网
( http: / / www.21cnjy.com / )
A. B. C. D.1
3、下列说法中,正确的是( )
A.“射击运动员射击一次,命中靶心”是必然事件
B.事件发生的可能性越大,它的概率越接近1
C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖
D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得
4、把形状完全相同风景不同的两张图片全部从 ( http: / / www.21cnjy.com )中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )
A. B. C. D.
5、下列事件中,是随机事件的为( )
A.通常加热到100℃时,水沸腾
B.任意画一个三角形,其内角和是360°
C.三角形中,任意两边之和大于第三边
D.随意翻到一本书的某页,这页的页码是奇数
6、下列事件中,属于必然事件的是(  )
A.射击运动员射击一次,命中10环
B.打开电视,正在播广告
C.投掷一枚普通的骰子,掷得的点数小于10
D.在一个只装有红球的袋中摸出白球
7、下列事件中,是必然事件的是(  )
A.如果a2=b2,那么a=b
B.车辆随机到达一个路口,遇到红灯
C.2021年有366天
D.13个人中至少有两个人生肖相同
8、同时抛两枚质地均匀的正方体骰子,骰子的六个面上分别刻有的点数,则下列事件中是必然事件的是( )www-2-1-cnjy-com
A.点数之和为奇数 B.点数之和为偶数 C.点数之和大于 D.点数之和小于
9、下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
10、有两把不同的锁和三把钥匙 ( http: / / www.21cnjy.com ),其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )21教育名师原创作品
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、现有5张除数字外完全相同的卡片,上面分别写有,,0,1,2这五个数,将卡片背面朝上洗匀,从中任意抽取两张,将卡片上的数字记为.
(1)用列表法或画树状图法列举的所有可能结果.
(2)若将m,n的值代入二次函数,求二次函数顶点在坐标轴上的概率.
2、综艺节目《朗读者》自开播以来受到大家 ( http: / / www.21cnjy.com )的广泛关注.重庆实验外国语学校某班主任准备从经常关注该节目的同学中抽取两人进行交流讨论,其中经常关注的同学中有3名男同学,1名女同学,则恰好抽取到1名男同学和1名女同学的概率是_________.【版权所有:21教育】
3、已如一个口袋中装有7个只有颜色不同 ( http: / / www.21cnjy.com )的球,其中3个白球,4个黑球.若往口袋中再放入2个白球,求从口袋中随机取出一个白球的概率________
4、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n=_____.
5、在如图所示的电路图中,当随机闭合开关K1、K2、K3中的两个时,能够让灯泡发光的概率为________.
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、一张连排休息座椅设有4个座位,甲先坐在如图所示的座位上,乙、丙2人等可能地坐到①、②、③中的2个座位上.
(1)乙坐在②号座位的概率是__________.
(2)用画树状图或列表的方法,求乙与丙相邻而坐的概率.
2、从1名男生和3名女生中随机抽取参加2022年北京冬季奥运会的志愿者.
(1)抽取2名,求恰好都是女生的概率;
(2)抽取3名,恰好都是女生的概率是 .
3、一个口袋中有10个黑球和若干个白 ( http: / / www.21cnjy.com )球,从口袋中随机摸出一球,记下其颜色后再把它放回口袋中摇匀,重复上述过程,共试验100次,其中75次摸到白球,估计袋中共有多少球?
4、今年夏天,某市出现大暴雨,部分 ( http: / / www.21cnjy.com )街区积水严重,小明和小亮所在的社区为了做好排涝工作,特招募社区抗涝志愿工作者.小明和小亮决定报名参加,根据规定,志愿者会被随机分到A(淤泥清理),B(垃圾搬运),C(街道冲洗),D(消毒灭杀)其中一组.
(1)志愿者小明被分配到D组服务是   .
A.不可能事件;B.随机事件;C.必然事件;D.确定事件.
(2)请用列表或画树状图的方法,求出志愿者小明和小亮被分配到同一组服务的概率.
5、一个纸箱内装有三张正面分别标有数字 ( http: / / www.21cnjy.com )﹣4,6,4的卡片,卡片除正面数字外其他均相同.将三张卡片搅匀后,从中随机摸出一张卡片记下数字,放回后搅匀,再从中随机摸出一张卡片并记下数字.请用列表法或画树状图法求两次取得数字的绝对值相等的概率.
-参考答案-
一、单选题
1、D
【分析】
根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得.
【详解】
解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,
故选:D.
【点睛】
题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键.
2、C
【分析】
根据中心对称图形的定义,即把一 ( http: / / www.21cnjy.com )个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;
【详解】
根据已知图形可得,中心对称图形是
, ( http: / / www.21cnjy.com / ), ( http: / / www.21cnjy.com / ),
共有3个,
∴抽到的图案是中心对称图形的概率是.
故选C.
【点睛】
本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.
3、B
【分析】
根据随机事件,必然事件,不可能事件的定 ( http: / / www.21cnjy.com )义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.
【详解】
解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;21*cnjy*com
事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;
某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;
图钉是不规则的物体,抛掷一枚图钉 ( http: / / www.21cnjy.com ),“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.
故选择B.
【点睛】
本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.
4、B
【分析】
设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.
【详解】
解:设四张小图片分别用A,a,B,b表示,画树状图得:
( http: / / www.21cnjy.com / )
由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,
∴摸取两张小图片恰好合成一张完整图片的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.
5、D
【分析】
根据随机事件的定义:在一定条件下,可能发生也可能不发生的事件叫做随机事件,进行逐一判断即可.
【详解】
解:A、通常加热到100℃时,水沸腾,这是必然事件,不符合题意;
B、任意画一个三角形,其内角和是360°这是不可能事件,不符合题意;
C、三角形中,任意两边之和大于第三边,这是必然事件,不符合题意;
D、随意翻到一本书的某页,这页的页码是奇数,也可能是偶数,这是随机事件,符合题意;
故选D.
【点睛】
本题主要考查了随机事件的定义,熟知定义是解题的关键.
6、C
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、射击运动员射击一次,命中10环,是随机事件;
B、打开电视,正在播广告,是随机事件;
C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;
D、在一个只装有红球的袋中摸出白球,是不可能事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件 ( http: / / www.21cnjy.com )、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、D
【分析】
在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.
【详解】
解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;
车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;
2021年是平年,有365天,原说法是不可能事件,故C不符合题意;
13个人中至少有两个人生肖相同,是必然事件,故D符合题意,
故选:D.
【点睛】
本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.
8、D
【分析】
根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可
【详解】
解:A、两次骰子的点数之和可能是奇数也可能是偶数,不是必然事件,不符合题意;
B、两次骰子的点数之和可能是奇数也可能是偶数,不是必然事件,不符合题意;
C、∵骰子的最大点数是12,∴两次点数之和不可能大于13,不是必然事件,不符合题意;
D、∵骰子的最大点数是12,∴两次点数之和小于13,是必然事件,符合题意;
故选D.
【点睛】
本题主要考查了必然事件的定义,熟知定义是解题的关键.
9、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件 ( http: / / www.21cnjy.com )的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2·1·c·n·j·y
10、B
【分析】
根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.21世纪教育网版权所有
【详解】
解:列表得:
锁1 锁2
钥匙1 (锁1,钥匙1) (锁2,钥匙1)
钥匙2 (锁1,钥匙2) (锁2,钥匙2)
钥匙3 (锁1,钥匙3) (锁2,钥匙3)
由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,
则P(一次打开锁).
故选:B.
【点睛】
本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.
二、填空题
1、(1)见解析;(2).
【分析】
(1)画出树状图即可;
(2)共有20种可能的结果,其中二次函数顶点在坐标轴上的结果有8种,再由概率公式求解即可.
【详解】
(1)画树状图得
( http: / / www.21cnjy.com / )
共有20种可能的结果;
(2)从,,0,1,2这五个数中任取两数m,n,共有20种可能,
其中二次函数顶点在坐标轴上(记为事件A)的有8种,
所以.
【点睛】
本题考查了用树状图法求概率以及二次函数的性质 ( http: / / www.21cnjy.com ).树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21·cn·jy·com
2、
【分析】
根据题意,使用列表法将所有可能性表示出来,然后找出满足条件的可能性计算概率即可.
【详解】
解:根据题意,使用列表法如下:
男 男 男 女
男 (男,男) (男,男) (男,女)
男 (男,男) (男,男) (男,女)
男 (男,男) (男,男) (男,女)
女 (女,男) (女,男) (女,男)
由表可得:共有12中可能,满足恰好抽取到1名男同学和1名女同学的共有6种可能性,
∴,
故答案为:.
【点睛】
题目主要考查利用树状图或者列表法表示出所有可能性,然后计算概率,熟练运用树状图或列表法是解题关键.
3、
【分析】
先确定口袋中的球数,任意取出一个,求出等可能的所有情况,再从中找出满足条件的白球的可能情况,让后利用概率公式计算即可.21教育网
【详解】
解:往口袋中再放入2个白球, ( http: / / www.21cnjy.com )此时口袋中一共有球9个,任取一个球出现等可能情况一共有9中可能,其中有白球5个,任取一个球是白球的共有5中情况,2-1-c-n-j-y
∴从口袋中随机取出一个白球的概率P=,
故答案为:.
【点睛】
本题考查列举法求简单概率,掌握列举法求简单概率,抓住列举所有等可能情况,与满足条件的情况,记住概率公式是解题关键.21*cnjy*com
4、
【分析】
根据概率公式计算即可
【详解】
共有个球,其中黑色球个
从中任意摸出一球,摸出黑色球的概率是.
解得
经检验,是原方程的解
故答案为:
【点睛】
本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.概率=所求情况数与总情况数之比.
5、
【分析】
根据题意画出树状图,由树状图求得所有可能的结果与能够让灯泡发光的情况,然后利用概率公式求解即可求得答案.【来源:21·世纪·教育·网】
【详解】
解:设K1、K2、K3中分别用1、2、3表示,
画树状图得:
( http: / / www.21cnjy.com / )
∵共有6种等可能的结果,能够让灯泡发光的有4种结果,
∴能够让灯泡发光的概率为:,
故答案为:.
【点睛】
本题主要考查了概率问题,根据题意画出树状图求得所有可能的结果与能够让灯泡发光的情况是关键.
三、解答题
1、(1);(2)见解析,P(乙丙相邻而坐)
【分析】
(1)直接根据概率公式计算即可;
(2)画树状图,共有6种等可能的结果,甲与乙相邻而坐的结果有2种,再由概率公式求解即可.
【详解】
解:(1)∵甲坐了1个座位,还剩3个座位
∴乙坐在②号座位的概率是;
(2)画树状图如图:
( http: / / www.21cnjy.com / )
共有6种等可能的结果,乙与丙恰好相邻而坐的结果有2种,
∴乙与丙相邻而坐的概率为.
【点睛】
本题考查了列表法与树状图法求概率,解题的关键是能够正确画处列表法或树状图.
2、(1);(2)
【分析】
(1)利用列表法进行求解即可;
(2)利用树状图的方法列出所有可能的情况,再求解即可.
【详解】
解:(1)列表如下:
男 女1 女2 女3
男 (女1,男) (女2,男) (女3,男)
女1 (男,女1) (女2,女1) (女3,女1)
女2 (男,女2) (女1,女2) (女3,女2)
女3 (男,女3) (女1,女3) (女2,女3)
由表格知,共有12种等可能性结果,其中满足“都是女生”(记为事件A)的结果只有6种,
∴抽取2名,恰好都是女生的概率;
(2)列树状图如下:
( http: / / www.21cnjy.com / )
由树状图可知,共有24种等可能性结果,其中满足“恰好都是女生”(记为事件B)的结果只有6种,
∴抽取3名,恰好都是女生的概率,
故答案为:.
【点睛】
本题考查列树状图或表格法求概率,掌握列树状图或表格的方法,做到不重不漏的列出所有情况是解题关键.
3、40
【分析】
根据频率稳定性定理,用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,进而得出得到白球的概率,即可得出等式求出即可.21cnjy.com
【详解】
解:设小球共有x个,根据题意可得:
解得:x=40.
经检验x=40,为方程的解且符合题意,
答:袋中共有40个球
【点睛】
此题主要考查了分式方程的应用和利用频率估计概率,得出求白球的频率公式是解题关键.
4、(1)B;(2)志愿者小明和小亮被分配到同一组服务的概率.
【分析】
(1)根据志愿者会被随机分到 ( http: / / www.21cnjy.com )A(淤泥清理),B(垃圾搬运),C(街道冲洗),D(消毒灭杀)其中一组即可得出随机事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件);【来源:21cnj*y.co*m】
(2)画树状图列出所有等可能的情况,从中找出符合条件的情况,然后利用概率公式计算即可.
【详解】
解:(1)∵志愿者会被随机分到A(淤泥清理),B(垃圾搬运),C(街道冲洗),D(消毒灭杀)其中一组,【出处:21教育名师】
志愿者小明被分配到D组服务是:B.随机事件;
故答案为B;
(2)根据随机事件中出现所有等可能的结果共有16种,其中志愿者小明和小亮被分配到同一组共有4种情况,
∴志愿者小明和小亮被分配到同一组服务的概率.
( http: / / www.21cnjy.com / )
【点睛】
本题考查事件的识别,画树状图或列表求概率,掌握事件的识别方法,和画树状图方法,列举所有等可能的结果,熟记概率公式是解题关键.
5、画树状图见解析,P两次取得数字的绝对值相等
【分析】
先列出树状图得到所有的等可能性的结果数,然后找到两次取得数字的绝对值相等的结果数,最后根据概率公式求解即可.
【详解】
解:列树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知一共有9种等可能性的结果数,
∵,,,
∴当两次摸到相同的数字,或者摸到一个4,一个-4,那么两次摸到的数的绝对值就相等,
∴由树状图可知两次取得数字的绝对值相等的结果数有5种,
∴P两次取得数字的绝对值相等.
【点睛】
本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握列表法或树状图法求解概率.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)