24.2.2 直线和圆的位置关系
第1课时 直线和圆的位置关系
一、教材分析
圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用.
二、教学目标
1、知道直线和圆相交、相切、相离的定义。
2、根据定义来判断直线和圆的位置关系,会根据直线和圆相切的定义画出已知圆的切线。
3、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
4、让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。
三、教学重难点
重点:直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。
难点:直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。
四、教学过程
(一)情境导入
你看过日出吗,如果把海平面看做一条直线,太阳看做一个圆,在日出过程中,二者会出现几种位置关系呢?如图二者是什么关系呢?
(二)合作探究
探究点一:直线与圆的位置关系
【类型一】根据点到直线的距离判断直线与圆的位置关系
例1:已知⊙O的半径为5,点P在直线l上,且OP=5,直线l与⊙O的位置关系是( )
A.相切 B.相交
C.相离 D.相切或相交
解析:我们考虑圆心到直线l的距离,如果距离大于半径,则直线l与⊙O的位置关系是相离;若距离等于半径,则直线l与⊙O相切;若距离小于半径,则直线l与⊙O相交.分两种情况讨论:(1)OP⊥直线l,则圆心到直线l的距离为5,此时直线l与⊙O相切.(2)若OP与直线l不垂直,则圆心到直线的距离小于5,此时直线l与⊙O相交.所以本题选D.
方法总结:判断直线与圆的位置关系,主要看该圆心到直线的距离,所以要判断直线与圆的位置关系,我们先确定圆心到直线的距离.
例2: △ABC中,AB=10cm,AC=8cm,BC=6cm,以点B为圆心、6cm为半径作⊙B,则边AC所在的直线与⊙B的位置关系是________.
解析:根据圆心到直线的距离与半径的大小关系来判断.本题根据勾股定理的逆定理可知△ABC是直角三角形,AC,BC是直角边,则圆心B到直线AC的距离是6cm,等于⊙B的半径,所以AC所在的直线与⊙B相切.
方法总结:根据勾股定理的逆定理来判断三角形的形状同时求出圆心到直线的距离是解题的关键.
【类型二】坐标系内直线与圆的位置关系的应用
例3: 如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点.若点M的坐标是(-4,-2),则点N的坐标为( )
A.(-1,-2) B.(1,2)
C.(-1.5,-2) D.(1.5,-2)
解析:过点A作AQ⊥MN于Q,连接AN,设半径为r,由垂径定理有MQ=NQ,所以AQ=2,AN=r,NQ=4-r,利用勾股定理可以求出NQ=1.5,所以N点坐标为(-1,-2).故选A.
方法总结:在圆中如果有弦要求线段的长度,通常要将经过圆心的半径画出,利用垂径定理和勾股定理解决问题.
【类型三】由直线和圆的位置关系确定圆心到直线的距离
例4: 已知圆的半径等于5,直线l与圆没有交点,则
圆心到直线l的距离d的取值范围是________.
解析:因为直线l与圆没有交点,所以直线l与圆相离,所以圆心到直线的距离大于圆的半径,即d>5.
【类型四】由直线和圆的位置关系确定圆的半径
例5: 直线l与半径为r的⊙O相交,且点O到直线l的距离为8,则r的取值范围是________.
解析:因为直线l与半径为r的⊙O相交,所以d<r,即8<r,所以填r>8.
五、板书设计
六、教学反思
教学过程中,强调学生从实际生活中感受,体会直线与圆的几种位置关系,并会用数学语言来描述归纳,经历将实际问题转化为数学问题的过程.