中小学教育资源及组卷应用平台
沪科版九年级物理第十七章从指南针到磁浮列车专题测试
考试时间:90分钟;命题人:物理教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是直流电铃的原理图。关于电铃工作时的说法不正确的是( )
A.电流通过电磁铁时,电磁铁有磁性且A端为N极
B.电磁铁吸引衔铁,使电路断开
C.小锤击打铃碗发出声音,是由于铃碗发生了振动
D.小锤击打铃碗时,电磁铁仍具有磁性
2、如图所示,根据通电螺线管中磁感线的方向,下列判断正确的是( )
A.A端为电源的负极 B.B端为电源的负极
C.螺线管的左端为N极 D.螺线管的右端为S极
3、小冬学习磁学知识后,想硏究橄榄形磁体周围的磁场分布情况,做了如图所示的实验,其中图乙是小磁针(黑色为N极)静止时的指向,图丙是铁屑静止时的分布.图中能正确用磁感线描述以上实验现象的是( )
A. B.
C. D.
4、为了判断一根铁棒是否具有磁性,小明进行了如下四个实验,根据实验现象不能确定该铁棒一定有磁性的是( )
A.悬挂的铁棒转动起来后静止时指向南北
B.将铁棒一端靠近小磁针,相互排斥
C.将铁棒一端靠近大头针,大头针被吸引
D.水平移动铁棒,测力计示数有变化
5、下列各力中,不属于弹力的是( )
A.磁铁对小铁球的吸引力 B.手对弹簧的拉力
C.手对弓的拉力 D.人对跳板的压力
6、下面所做探究活动与得出结论相匹配的是( )
A.活动:探究带电体间的相互作用结论:同种电荷相互吸引,异种电荷相互排斥
B.活动:马德堡半球实验结论:大气压真实存在且很大
C.活动:观察惯性现象结论:一切物体都受到惯性力的作用
D.活动:用铁屑探究磁体周围的磁场结论:磁感线是真实存在的
7、闭合开关S,通电螺线管周围的磁感线如图所示,则下列说法正确的是( )
A.A端为电源的正极
B.通电螺线管右端为N极
C.小磁针左端为N极
D.改变电流的大小可以改变通电螺线管的磁场方向
8、用钢条的一端去接近小磁针,如果小磁针被吸引过来,则( )
A.钢条肯定有磁性 B.钢条肯定没有磁性
C.钢条可能有磁性 D.以上说法都不对
9、利用图实验所揭示的原理可制成( )
A.电动机 B.电磁铁
C.通电螺线管 D.电磁继电器
10、如图所示,是电学中常见的电路图,在A、B两点间分别接入下列选项中加点字的元件并进行以下对应实验,对滑动变阻器在此实验中的作用描述正确的是( )
①探究电流与电阻的关系时是为了调节电阻两端电压成倍数变化
②用“伏安法”测电阻时是为了改变定值电阻两端电压,测量对应电流
③研究影响电阻大小因素时是为了更换不同电阻丝,保持电流不变,测量对应电压值
④研究电磁铁磁性强弱与线圈匝数关系时是为了更换匝数不同电磁铁,保持电流不变
A.①② B.②③ C.③④ D.②④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题3分,共计15分)
1、写出下列能量的转化:电动机通电后高速转动,是______能转化为______能。
2、根据图中通电螺线管的S极,可以判断:静止的小磁针____端为N极,电源的_____端为正极(两空均选填“左”或“右”)。
3、为了纪念科学家欧姆对电学基础知识研究的重大贡献,物理学中以他的名字作为物理量______的单位。在物理学发展史上,______实验第一次发现了电与磁之间的联系。
4、在探究“影响电磁铁磁性强弱的因素”实验中,小明设计了如图所示的电路。由实验现象可知,______(选填“甲”或“乙”)的磁性强,说明电流一定时,线圈匝数______,电磁铁磁性越强。
5、奥斯特实验表明,通电导体周围存在________。电动机通电后会转动,是由于磁场对通电导体具有___________的作用。
三、计算题(5小题,每小题8分,共计40分)
1、如图甲是某小区高层住宅电梯结构的示意图,它主要是由轿厢、滑轮、配重、缆绳及电动机等部件组成,小明家住该小区某栋楼的21楼,他乘电梯从1楼匀速升到21楼用时60s,已知每层楼的高度为3m.小明重500N,轿厢重4500N,动滑轮和细绳的重力以及摩擦力均忽略不计,针对此过程,解答下列问题.
(1)拉力F的功率为多大______?
(2)动滑轮A提升小明的机械效率为多少_______?
(3)图乙是该电梯超载自动报警系统工作原理的示意图,在工作电路中,当电梯没有超载时,触点K与触点A接触,闭合开关S,电动机正常工作,当电梯超载时,触点K与触点B接触,电铃发出报警铃声,即使闭合开关S,电动机也不工作,在控制电路中,已知电源电压为8V,保护电阻R2=100Ω,电阻式压力传感器R1的阻值随乘客压力(F压)大小变化如图丙所示,电磁铁线圈的阻值忽略不计,当电磁铁线圈电流超过0.02A时,电铃就会发出警报声.
①由丙图可知,电梯承载的人越多,电阻式压力传感器R1受到的压力越大,电阻_____,电路中电流_____,当电流达到0.02A时,衔铁被吸下,电铃发出警报声.
②若乘客人均重为600N,该电梯最多可以承载多少人_______?
2、有一种电加热恒温箱,工作原理如图a所示.控制电路由电压为U1=6V的电源、电磁继电器(线圈电阻不计)、滑动变阻器R0和热敏电阻R1组成;工作电路由电压为U2=220V的电源和电阻为R2=48.4Ω的电热丝组成.当控制电路中的电流达到0.05A时,衔铁被吸下来,触点处断开,工作电路停止工作,当控制电路中的电流小于0.05A时,衔铁被弹回,触点处接通,加热电路正常工作.热敏电阻R1的阻值随温度变化关系如图b所示.
(1) 工作电路正常工作1min,电热丝R2产生的电热是多少?
(2) 通过调节控制电路中滑动变阻器R0接入电路的阻值,就能调节恒温箱中需要设定的不同温度,如果恒温箱的温度设定为50℃,求滑动变阻器R0应接入电路的阻值.
(3) 若要提高恒温箱的设定温度,滑动变阻器R0接入电路的阻值应调大还是调小?
3、图甲是温度自动报警器.控制电路中,电源电压U控=5V,热敏电阻R2的阻值与温度的关系如图乙所示;工作电路中,灯泡L标有“9V 0.3A”的字样,R4为电子嗡鸣器,它的电流达到某一固定值时就会发声报警,其阻值R4=10Ω.在R2温度为20℃的情况下,小明依次进行如下操作:闭合开关S1和S2,灯泡L恰好正常发光,此时R0的电功率为P0;将R1的滑片调到最左端时,继电器的衔铁刚好被吸下,使动触点与下方静触点接触;调节R3的滑片,当R3与R4的电压之比U3:U4=4:1时,电子嗡鸣器恰好能发声,此时R0的电功率为,.已知电源电压、灯丝电阻都不变,线圈电阻忽略不计.求:
(1)灯泡L的额定功率;
(2)当衔铁刚好被吸下时,控制电路的电流;
(3)将报警温度设为50℃时,R1接入电路的阻值;
(4)工作电路的电源电压Ux.
4、如图电磁继电器和热敏电阻R1等组成了恒温箱控制电路,R1处于恒温箱内.电源电压U=6v,继电器线圈的电阻可不计.如图为热敏电阻的R1-t图象,且已知在50~150℃范围内,热敏电阻的阻值随温度的变化规律是:R1 t=常数;电阻R2是可变电阻.当线圈中的电流达到20mA时,继电器的衔铁被吸合.已知此时可变电阻R2=225Ω,恒温箱保持60℃恒温.图中的“交流电源”是恒温箱加热器的电源.
(1)60℃时,热敏电阻R1的阻值是多少?
(2)应该把恒温箱的加热器接在A、B端还是C、D端?
(3)如果要使恒温箱内的温度保持100℃,可变电阻R2的阻值应调为多少?
5、小明在研究性学习活动中,查阅到一种热敏电阻的阻值随温度变化的规律如 下表,并将该型号的热敏电阻应用于如图所示由“控制电路”和“工作电路”组 成的恒温箱电路中。
温度/°C … 30 40 50 60 70 …
热敏电阻阻值 R1/Ω … 350 300 250 210 175 …
“控制电路”由热敏电阻R1、电磁铁(线圈阻值R0=50Ω)、电源 U1、开关等组成,当线圈中电流大于或等于20mA 时,继电器的衔铁被吸合,右边工作电路则断开;“工作电路”由工作电源U2(U2=10V)、发热电阻R2(R2=5Ω)、导线等组成。问:
(1)工作电路工作时的电流为多大?
(2)电阻R2的发热功率为多大?
(3)若恒温箱的温度最高不得超过50°C,则控制电路的电源电压U1最小值为多大?
四、实验探究(3小题,每小题5分,共计15分)
1、在探究“电磁铁磁性强弱的影响因素”实验中,使用了如图所示的器材,请完成下列问题:
(1)开关S闭合后,螺线管的左端为______极;(选填“N”或“S”)
(2)当导线由触点1改接为触点2时,线圈的匝数发生改变,调节滑动变阻器使电流表示数不变,发现悬挂的小铁箔M偏离竖直位置的角度明显变小,请结合以上情景提出一个可探究的科学问题:______。
2、小红用图(a)、(b)、(c)所示装置研究磁与电的关系。
①由图(a)、(b)、(c)可知:电流周围存在磁场,且_________________;
②小红推理:若一束电子沿着水平方向平行地飞过小磁针上方,如图(d)所示,小磁针也会发生偏转。其依据是: ___________________;
③图(d)中小磁针N极偏转方向和图_____________中小磁针的偏转方向相同,依据是: __________________。
3、用表而涂有绝殊漆的漆包线绕在供钉上做成了线圈上有四个接线柱a、b、c、d的电磁铁,使用不同的接线柱,可改变电磁铁线圈的匝数。电磁铁和其他实验器材组成如图所示电路,用该电路来研究影响电磁磁性强弱的因素”。请完成如下问题:
(1)实验中电磁铁磁性的强弱用电磁铁吸引 _____ 来反映的;按图中所示的连接,铁钉的下端应是电磁铁的 ___ 极。
(2)连接电磁铁线圈的接线柱a,闭合开关,调节滑动变阻器,可以探究电磁铁磁性强弱与 _____ 是否有关;当变阻器滑片移至最右端时,电磁铁的磁性 ______ 。
(3)滑动变阻器滑片保持不动,导线夹子分别连接线圈的接线柱a、b、c、d,可以探究电磁铁磁性强弱与 _______ 是否有关。当导线夹子连接接线柱 _____ 时,电磁铁的磁性最强。
-参考答案-
一、单选题
1、D
【详解】
A.根据安培定则,右手握住螺线管,四指指向电流的方向,大拇指所指的方向为螺线管的N极,由此可判断出A端为N极,故A正确,不符合题意;
B.电磁铁向下吸引衔铁时,弹簧片与螺钉分开,电路断开,故B正确,不符合题意;
C.声音是由物体的振动产生的,小锤击打铃碗时发出声音,是由于铃碗发生了振动,故C正确,不符合题意;
D.衔铁被吸引时,小锤击打铃碗,电路断路,电路中没有电流,电磁铁失去磁性,故D错误,符合题意。
故选D。
2、A
【详解】
在磁体的周围,磁感线从磁体的N极流出,回到S极,所以利用磁感线的方向,可以确定螺线管的左端为S极,右端为N极;根据螺线管的右端为N极结合图示的线圈绕向,利用安培定则可以确定电流从螺线管的右端流入左端流出。所以电源的B端为正极,A端为负极;故A正确,BCD错误。
故选A。
3、C
【详解】
小磁针静止时N极所指方向为该点的磁场方向,由此可知该磁体周围的磁感线方向是水平环形顺时针方向,故ABD不符合题意,C符合题意。
故选C。
4、A
【详解】
A.只有悬挂起来的铁棒自然静止时总是指向南北,才可以判断铁棒具有磁性,故A符合题意;
B.因为同名磁极相互排斥,当将铁棒的一端靠近小磁针若相互排斥,则可以断定铁棒具有磁性,故B不符合题意;
C.因为磁体具有吸铁性,当铁棒能够吸引大头针时说明铁棒具有磁性,故C不符合题意;
D.由于磁体能够吸引铁质物质,当水平移动铁棒,测力计示数有变化,说明铁棒两端和中间部分有磁性强弱变化,故说明铁棒是磁体,故D不符合题意。
故选A。
5、A
【详解】
A.磁铁对小铁球的吸引力是磁场力,不是弹力,该事例中不存在弹力,故A符合题意;
B.手拉弹簧时,弹簧变长发生弹性形变,会产生弹力,故B不符合题意;
C.手拉弓时,弓会发生弹性形变,会产生弹力作用,故C不符合题意;
D.跳板在人的压力作用下弯曲,发生弹性形变,会产生弹力作用,故D不符合题意。
故选A。
6、B
【详解】
A.电荷间相互作用的规律是同种电荷相互排斥,异种电荷相互吸引,故A不符合题意;
B.马德堡半球实验有力地证明了大气压的存在,并且大气压很大,故B符合题意;
C.惯性是物体的一种固有属性,它不是力,不能说受到惯性力的作用,故C不符合题意;
D.磁感线是理想化的物理模型,磁感线实际上并不存在,故D不符合题意。
故选B。
7、C
【详解】
ABC.由图可知,磁感线是从螺线管的左端出来的,则左端为N极,右端为S极,根据安培定则可知,螺线管外侧电流的方向是向上的,即电源的B端为正极;根据异名磁极相互吸引,所以小磁针的左端为N极,右端为S极;故AB错误,C正确;
D.磁场的方向与电流的大小无关(与电流的方向有关),改变电流的大小可以改变通电螺线管的磁场强弱,故D错误。
故选C。
8、C
【详解】
当磁体与一个物体相互吸引时,有两种可能,一是那个物体属于铁、钴、镍等没有磁性的物质,二是那个物体有磁性,异名磁极相互吸引。所以,A、B、D不符合题意,C符合题意。
故选C。
9、A
【详解】
图中装置中有电源,并且把通电导体放入了磁场中,通电导体会受力而运动,因此由图中原理可制成电动机,故A符合题意,BCD不符合题意。
故选A。
10、D
【详解】
①探究电流与电阻的关系时滑动变阻器是为了保护电路和控制电阻两端的电压不变;
②用“伏安法”测电阻时,滑动变阻器是为了改变定值电阻两端电压,测量对应电流,进行多次实验测量求平均值,减小误差;
③研究影响电阻大小因素时滑动变阻器是是为了保护电路和更换不同电阻丝,保持电压不变,测量对应电流值,
④研究电磁铁磁性强弱与线圈匝数关系时要控制电路电流不变,为了让匝数不同电磁铁通过的电流相等,通过调节滑动变阻器保持电流不变,故ABC错误,D正确。
故选D。
二、填空题
1、电 机械
【详解】
[1][2]电动机通电后高速转动,电流做功,电能转化为机械能。
2、左 左
【详解】
[1][2]图中螺线管的左端为S极,根据异名磁极相互吸引,可知小磁针的左端为N极,再利用安培定则,使拇指指向N极,其余四指环绕的方向就是导体中电流的方向,因此可判断出电源的“+”极在如图电源的左端。
3、电阻 奥斯特
【详解】
[1]科学家欧姆发现了电阻中电流与电压的正比关系,即著名的欧姆定律;他还证明了导体的电阻与其长度成正比,与其横截面积和传导系数成反比。为了纪念他,物理学里以他的名字作为物理量电阻的单位。
[2]1820年,丹麦物理学家奥斯特第一次发现了电与磁之间的联系,把这个实验称为奥斯特实验。
4、乙 越多
【详解】
[1][2]根据图示的情境可知,甲、乙串联,电流相同,乙缠绕的线圈的匝数多,乙电磁铁吸引的大头针多,说明乙的磁性强;由此说明电流一定时,线圈匝数越多,电磁铁磁性越强。
5、磁场 力
【详解】
[1]奥斯特实验证明了电流的周围存在磁场,即电流的磁效应。
[2]电动机是利用通电导体在磁场中受力而运动的原理制成的。
三、计算题
1、5000W 10% 越小 越大 13
【详解】
(1)他乘电梯从1楼匀速升到21楼时,上升的高度:h=(21 1)3m=60m,因动滑轮和细绳的重力以及摩擦力均忽略不计,克服小明重力和轿厢重力做的功为总功,所以,拉力F做的总功:W总=(GG轿厢)h=(500N4500N)60m=3105J,拉力F的功率:P==5000W;(2)动滑轮A提升小明时做的有用功:W有=Gh=500N×60m=3×104J,动滑轮A提升小明的机械效率:η=100%=100%=10%;(3)①电梯承载的人越多,电阻式压力传感器R1受到的压力越大,由丙图可知,电阻越小,电路中的总电阻越小,由I=可知,电路中电流越大,当电流达到0.02A时,衔铁被吸下,电铃发出警报声;②当电流达到0.02A时,电路的总电阻:R==400Ω,因串联电路中总电阻等于各分电阻之和,所以,此时压力传感器的电阻值:R1=R R2=400Ω 100Ω=300Ω,由图丙可知,此时的最大压力为8000N,电梯承载的人数=13.3,即13人.
点睛:(1)乘电梯从1楼匀速升到21楼时上升的高度为20层楼的高度,动滑轮和细绳的重力以及摩擦力均忽略不计,克服小明重力和轿厢重力做的功为总功,根据W=Gh求出拉力F做的总功,根据P=求出拉力F的功率;(2)克服小明重力做的功为有用功,根据W=Gh求出其大小,利用η=×100%求出动滑轮A提升小明的机械效率;(3)①电梯承载的人越多,电阻式压力传感器R1受到的压力越大,由丙图可知其阻值的变化,根据欧姆定律可知电路中电流的变化;②当电流达到0.02A时,根据欧姆定律求出电路的总电阻,利用电阻的串联求出此时压力传感器的电阻值,由图丙可知此时的最大压力,然后得出电梯承载的人数.
2、 (1) 6×104J (2)4 0Ω (3)调大
【详解】
(1)电热丝正常工作1分钟,产生的热量: ;
(2)当温度为50℃时,R1=80Ω,在控制电路中, ,
R2=R总﹣R1=120Ω﹣80Ω=40Ω;
(3)若提高恒温箱的温度,则R1的电阻减小,因为工作电路正常工作时,控制电流不变,因此控制电路的总电阻不变,R1电阻减小,因此变阻器接入电路的电阻应调大.
3、(1)2.7W(2)0.2A(3)15Ω(4)12V
【详解】
(1)灯泡L的额定功率是:
P额=U额I额=9V×0.3A=2.7W;
(2)当衔铁刚好被吸下时,变阻器R1接入电路的阻值刚好为0,由图乙知道,温度为20℃时R2的阻值是R2=25Ω
控制电路的电流是:
(3)当将报警温度设为50℃时,由图乙知,R2的阻值变为=10Ω,此时控制电路的电流仍然为I=0.2A,由知道,R1接入电路的阻值是:
;
(4)当继电器的衔铁还没被吸下时,电路中的电流为I额=0.3A,则有
;
当继电器的衔铁被吸下时,设此时电路的电流为I,则有
;
由即知道,I=0.2A,此时
因为U3:U4=4:1,所以U3=8V
因为,所以,
,
即
,
代入数据得:
解得Ux=12V.
答:(1).灯泡L的额定功率为2.7W;
(2).当衔铁刚好被吸下时,控制电路的电流为0.2A;
(3).将报警温度设为50℃时,R1 接入电路的阻值为15Ω;
(4).工作电路的电源电压Ux 为12V
4、75Ω 由图2可知,当恒温箱内的温度升高时,热敏电阻的阻值随之减小,电路中的电流增大,当电流达到20mA时,电磁铁能够吸引下衔铁,使动触点与C、D所在的电路接通.若把加热器接在此电路中,会使恒温箱内的温度持续升高.相应的,热敏电阻的阻值继续减小,电流持续增大,电磁铁的磁性继续增强,使CD这个电路始终接通,加热器永远工作.达不到控制温度的目的.所以,要把恒温箱的加热器应接在A、B端. 255Ω
【解析】
(1)60℃时,控制电路I=20mA=0.02A,R总==300Ω,R1=R总 R2=300Ω 225Ω=75Ω;(2)由图2可知,当恒温箱内的温度升高时,热敏电阻的阻值随之减小,电路中的电流增大,当电流达到20mA时,电磁铁能够吸引下衔铁,使动触点与C. D所在的电路接通.若把加热器接在此电路中,会使恒温箱内的温度持续升高.相应的,热敏电阻的阻值继续减小,电流持续增大,电磁铁的磁性继续增强,使CD这个电路始终接通,加热器永远工作.达不到控制温度的目的.所以,要把恒温箱的加热器应接在A. B端.(3)设100℃热敏电阻的阻值为,∵R1 t=常数,∴75×60=×100,解得=45Ω,R总==300Ω, =300Ω 45Ω=255Ω.
点睛:(1)要求R1的阻值,由电路图可知,R1、R2串联后接在6V的电源上,电源电压已知,此时电路中的电流也知道,可用电源电压与电流求出总电阻,然后减去R2,即可解得R1.(2)恒温箱的加热器接在A、B端还是C、D端,主要是由热敏电阻随温度的变化趋势来决定的.(3)要求电阻R2此时的阻值应调为多少,首先要知道此时热敏电阻R1的阻值是多少,而R1 t=常数是一个非常关键的突破口.
5、 (1)2A;(2)20W;(3)6V
【详解】
解:(1)工作电路中,电源电压
U2=10V
发热电阻
R2=5Ω
则工作电路工作时的电流
(2)电阻R2的发热功率
P2=U2I2=10V×2A=20W
(3)当线圈中的电流
I1=20mA=0.02A
时,继电器的衔铁被吸合,右边工作电 路断开,此时控制电路的电源电压最小,由表格数据可知,当恒温箱的温度为50°C时,热敏电阻的阻值
R1=250Ω
因串联电路中总电阻等于各分电阻之和,根据可得控制电路的最小电源电压
U1=I1(R1+R2)=0.02A×(250Ω+50Ω)=6V
答:(1)工作电路工作时的电流为2A;
(2) 电阻R2的发热功率为20W;
(3)若恒温箱的温度最高不得超过50°C,则控制电路的电源电压U1最小值为6V。
四、实验探究
1、N 电磁铁磁性与线圈匝数有什么关系
【详解】
(1)[1]由电流流向可知,通电螺线管外侧的导线电流方向是向上的,由安培定则:用右手握住螺线管,让四指指向螺线管中电流方向,大拇指所指方向为螺线管的N极,可知左侧为N极。
(2)[2]导线由触点1改接为触点2时,线圈的匝数发生改变,虽然调节滑动变阻器使电流表示数不变,但线圈匝数变少后电磁铁的磁性发生了变化,所以对铁箔M的吸引力减小了,故可以提出问题:电磁铁磁性与线圈匝数有什么关系。
2、磁场方向与电流方向有关 自由电子定向移动形成电流,电流周围存在磁场 C 电子带负电,负电荷定向移动的方向与电流的方向相反
【详解】
[1]由图(a)、(b)、(c)可知,导线不通电,小磁针不偏转,通电后小磁针发生偏转,这说明电流周围存在磁场,改变电流的方向,小磁针的偏转方向发生了改变,这说明磁场的方向与电流方向有关。
[2]小红推理:若一束电子沿着水平方向平行地飞过小磁针上方,电子是负电荷,其定向移动时会产生电流,电流的周围存在磁场,则小磁针也会发生偏转。
[3][4]电子带负电,负电荷定向移动的方向与电流的方向相反,故图d中小磁针N极偏转方向和图c小磁针的偏转方向相同。
3、大头针的数量 S 电流大小 最弱 线圈匝数 d
【详解】
(1)[1]实验中通过观察电磁铁吸引大头针的数目的多少,来判断电磁铁磁性的强弱,采用了转换法。
[2]根据图像可以判断电流从电磁铁上端流入下端流出,根据右手螺旋定则,可以判断上方是N极,则下方是S极。
(2)[3]电路中调节滑动变阻器会改变滑动变阻器接入电路中的阻值,从而改变电流的大小。在接线柱不变的情况下,线圈匝数相同,就可以探究电磁铁磁性强弱与电流大小的关系。
[4]当滑动变阻器滑片移至最右端时滑动变阻器接入电路中的电阻最大,此时电路中电流最小。电流越小电磁铁的磁性越弱,则此时电磁铁的磁性最弱。
(3)[5]当滑动变阻器滑片保持不动时,电路中的电流不变,此时改变接线柱的位置可以改变接入电路中的电磁铁的线圈的匝数,这样就可以探究电磁铁的磁性强弱与线圈匝数的关系。
[6]当电流不变时,电磁铁的线圈匝数越多,磁性越强,所以导线连接d接线柱时,电磁铁的磁性最强。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)