(共29张PPT)
14.2 乘法公式
14.2.2 完全平方公式
人教版 数学 八年级 上册
现有如图所示的三种规格的硬纸片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,拼出一个正方形,并探究所拼出的正方形的代数意义.
导入新知
2. 灵活应用完全平方公式进行计算.
1. 理解并掌握完全平方公式的推导过程、结构特点、几何解释.
素养目标
3. 体验归纳添括号法则.
一块边长为a米的正方形实验田,因需要将其边长增加 b 米.形成四块实验田,以种植不同的新品种(如图). 用不同的形式表示实验田的总面积, 并进行比较.
a
a
b
b
直接求:总面积=(a+b)(a+b)
间接求:总面积=a2+ab+ab+b2
你发现了什么?
(a+b)2=a2+2ab+b2
探究新知
知识点 1
完全平方公式
计算下列多项式的积,你能发现什么规律?
(1) (p+1)2=(p+1)(p+1)= .
p2+2p+1
(2) (m+2)2=(m+2)(m+2)= .
m2+4m+4
(3) (p–1)2=(p–1)(p–1)= .
p2–2p+1
(4) (m–2)2=(m–2)(m–2)= .
m2–4m+4
根据你发现的规律,你能写出下列式子的答案吗?
(a+b)2= .
a2+2ab+b2
(a–b)2= .
a2–2ab+b2
探究新知
问题1:
问题2:
(a+b)2= .
a2+2ab+b2
(a–b)2= .
a2–2ab+b2
也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.这两个公式叫做(乘法的)完全平方公式.
简记为:
“首平方,尾平方,积的2倍放中央”
探究新知
完全平方公式
你能根据下面图形的面积说明完全平方公式吗
探究新知
设大正方形ABCD的面积为S.
S= =S1+S2+S3+S4= .
(a+b)2
a2+b2+2ab
S1
S2
S3
S4
探究新知
证明
a
a
b
b
=
+
+
+
a2
ab
ab
b2
(a+b)2= .
a2+2ab+b2
和的完全平方公式:
探究新知
几何解释
a2
ab
b(a b)
=
a2 2ab+b2 .
=
(a b)2
a b
a b
a
a
ab
b(a b)
b
b
(a b)2
(a–b)2= .
a2–2ab+b2
差的完全平方公式:
探究新知
几何解释
(a+b)2= a2+2ab+b2.
(a–b)2= a2–2ab+b2.
观察下面两个完全平方式,比一比,回答下列问题:
(1) 说一说积的次数和项数.
(2) 两个完全平方式的积有相同的项吗?与a,b有什么关系?
(3) 两个完全平方式的积中不同的是哪一项?与a, b有什么关系?它的符号与什么有关?
探究新知
问题4:
公式特征:
公式中的字母a,b可以表示数、单项式和多项式.
积为二次三项式;
积中两项为两数的平方和;
另一项是两数积的2倍,且与两数中间的符号相同.
探究新知
下面各式的计算是否正确?如果不正确,应当怎样改正?
(1)(x+y)2=x2 +y2
(2)(x –y)2 =x2 –y2
(3) (–x +y)2 =x2+2xy +y2
(4) (2x+y)2 =4x2 +2xy +y2
×
×
×
×
(x +y)2 =x2+2xy +y2
(x –y)2 =x2 –2xy +y2
(–x +y)2 =x2 –2xy +y2
(2x +y)2 =4x2+4xy +y2
探究新知
想一想
例1 运用完全平方公式计算:
解: (4m+n)2=
=16m2
(1)(4m+n)2;
(a + b)2= a2 + 2ab + b2
(4m)2
+2 (4m) n
+n2
+8mn
+n2;
素养考点 1
利用完全平方公式进行计算
探究新知
(2)
(a – b)2 = a2– 2ab + b2
y2
=y2
–y
+
解: =
+
–2 y
利用完全平方公式计算:
(1)(5–a)2; (2)(–3m–4n)2;
(3)(–3a+b)2.
(3)(–3a+b)2=9a2–6ab+b2.
解:(1)(5–a)2=25–10a+a2;
(2)(–3m–4n)2=9m2+24mn+16n2;
巩固练习
(1) 1022;
= (100 –1)2
=10000 –200+1
解: 1022
= (100+2)2
=10000+400+4
=10404.
(2) 992.
992
=9801.
例2 运用完全平方公式计算:
素养考点 2
利用完全平方公式进行简便计算
探究新知
利用乘法公式计算:
(1)982–101×99; (2)20162–2016×4030+20152.
=(2016–2015)2=1.
解:(1)原式=(100–2)2–(100+1)(100–1)
=1002–400+4–1002+1=–395;
(2)原式=20162–2×2016×2015+20152
巩固练习
例3 已知x–y=6,xy=–8.
求:(1) x2+y2的值; (2)(x+y)2的值.
=36 –16=20;
解:(1)∵x–y=6,xy=–8,
(x–y)2=x2+y2–2xy,
∴x2+y2=(x–y)2+2xy
(2)∵x2+y2=20,xy=–8,
∴(x+y)2=x2+y2+2xy
=20 –16=4.
素养考点 3
利用完全平方公式的变形求整式的值
探究新知
方法总结:本题要熟练掌握完全平方公式的变式:
x2+y2=(x–y)2+2xy=(x+y)2–2xy,(x–y)2=(x+y)2–4xy.
(1)已知x+y=10,xy=24,则x2+y2=_____.
52
对应训练.
(2)如果x2+kx+81是运用完全平方式得到的结果,
则k=________ .
18或–18
(3)已知ab=2,(a+b)2=9,则(a–b)2的值为______.
1
巩固练习
添括号法则
a+(b+c) = a+b+c;
a– (b+c) = a – b – c.
a + b + c = a + ( b + c) ;
a – b – c = a – ( b + c ) .
去括号:
把上面两个等式的左右两边反过来,也就是添括号:
知识点 2
探究新知
添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号(简记为“负变正不变”).
探究新知
添括号法则
例 运用乘法公式计算:
(1) (x+2y–3)(x–2y+3) ; (2) (a+b+c)2.
原式=[x+(2y–3)][x–(2y–3)]
解: (1)
(2)原式= [(a+b)+c]2
= x2–(2y–3)2
= x2–(4y2–12y+9)
= x2–4y2+12y–9.
= (a+b)2+2(a+b)c+c2
=a2+2ab+b2+2ac+2bc+c2.
素养考点 4
添括号法则的应用
探究新知
计算:(1)(a–b+c)2; (2)(1–2x+y)(1+2x–y).
=1–4x2+4xy–y2.
解:(1)原式=[(a–b)+c]2
=(a–b)2+c2+2(a–b)c
=a2–2ab+b2+c2+2ac–2bc;
(2)原式=[1– (2x–y)][1+(2x–y)]
=12–(2x–y)2
巩固练习
1. 将9.52变形正确的是( )
A.9.52=92+0.52 B.9.52=(10+0.5)(10–0.5)
C.9.52=102–2×10×0.5+0.52 D.9.52=92+9×0.5+0.52
2. 若x2+2(m–3)x+16是关于x的完全平方式,则m= .
C
–1或7
链接中考
2.下列计算结果为2ab–a2–b2的是( )
A.(a–b)2 B.(–a–b)2
C.–(a+b)2 D.–(a–b)2
1. 运用乘法公式计算(a–2)2的结果是( )
A.a2–4a+4 B.a2–2a+4
C.a2–4 D.a2–4a–4
A
D
基础巩固题
课堂检测
3.运用完全平方公式计算:
(1) (6a+5b)2=_______________;(2) (4x–3y)2=_______________ ;
(3) (2m–1)2 =_______________;(4)(–2m–1)2 =_______________.
36a2+60ab+25b2
16x2–24xy+9y2
4m2+4m+1
4m2–4m+1
4.由完全平方公式可知:32+2×3×5+52=(3+5)2=64,运用这一方法计算:4.3212+8.642×0.679+0.6792=________.
25
课堂检测
计算:(1)(3a+b–2)(3a–b+2);(2)(x–y–m+n)(x–y+m–n).
(2)原式=[(x–y)–(m–n)][(x–y)+(m–n)]
解:(1)原式=[3a+(b–2)][3a–(b–2)]
=(3a)2–(b–2)2
=9a2–b2+4b–4.
=(x–y)2–(m–n)2
=x2–2xy+y2–m2+2mn–n2.
能力提升题
课堂检测
1.若a+b=5,ab=–6, 求a2+b2,a2–ab+b2.
2.已知x+y=8,x–y=4,求xy.
解:a2+b2=(a+b)2–2ab=52–2×(–6)=37;
a2–ab+b2=a2+b2–ab=37–(–6)=43.
解:∵x+y=8, ∴(x+y)2=64,即x2+y2+2xy=64①;
∵x–y=4, ∴(x–y)2=16,即x2+y2–2xy=16②;
由①–②得
4xy=48
∴xy=12.
拓广探索题
课堂检测
完全平方公式
法则
注意
(a±b)2= a2±2ab+b2
1.项数、符号、字母及其指数
2.不能直接应用公式进行计算的式子,可能需要先添括号变形成符合公式的要求才行
常用
结论
3.弄清完全平方公式和平方差公式不同(从公式结构特点及结果两方面)
a2+b2=(a+b)2–2ab=(a–b)2+2ab;
4ab=(a+b)2–(a–b)2.
课堂小结