第二十一章 一元二次方程
一、单选题
1.在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数P,得到方程的两个根是5,﹣4,则原来的方程是( )
A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=0
2.将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是( )
A.,21 B.,11 C.4,21 D.,69
3.如图,一次函数y=-3x+4的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D.若矩形OCPD的面积为1时,则点P的坐标为( )
A.(,3) B.(,2) C.(,2)和(1,1) D.(,3)和(1,1)
4.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为( )
A.x(x+1)=28 B.x(x﹣1)=28
C.x(x﹣1)=28 D.x(x+1)=28
5.若关于x的一元二次方程有两个实数根,,且,则( )
A.2或6 B.2或8 C.2 D.6
6.下列方程中,一定是关于x的一元二次方程的是( )
A. B.
C. D.
7.已知,是方程的两个实数根,则代数式的值是( )
A.4045 B.4044 C.2022 D.1
8.下列一元二次方程中,有两个不相等实数根的是( )
A. B.x2+2x+4=0 C.x2-x+2=0 D.x2-2x=0
9.方程y2=-a有实数根的条件是( )
A.a≤0 B.a≥0 C.a>0 D.a为任何实数
10.关于x的方程实数根的情况,下列判断正确的是( )
A.有两个相等实数根 B.有两个不相等实数根 C.没有实数根 D.有一个实数根
二、填空题
11.若一元二次方程(b,c为常数)的两根满足,则符合条件的一个方程为_____.
12.如图,在一块长为22m,宽为14m的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草.若花草的种植面积为240m2,则小路的宽为________m.
13.如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m ,设道路的宽为x m,则根据题意,可列方程为_______.
14.若m,n是一元二次方程的两个实数根,则的值为___________.
15.已知关于的方程的一个根是,则____.
16.若关于x的一元二次方程的根的判别式的值为4,则m的值为_____.
17.写出一个一元二次方程,使它有两个不相等的实数根______.
三、解答题
18.在刚刚过去的“五一”假期中,某超市为迎接“五一”小长假购物高潮,经销甲、乙两种品牌的洗衣液.市场上甲种品牌洗衣液的进价比乙种品牌洗衣液的进价每瓶便宜10元,该超市用6000元购进的甲种品牌洗衣液与用8000元购进的乙种品牌洗衣液的瓶数相同.
(1)求甲、乙两种品牌的洗衣液的进价;
(2)在销售中,该超市决定将甲种品牌的洗衣液以每瓶45元售出,每天固定售出100瓶;但调查发现,乙种品牌的洗衣液每瓶售价50元时,每天可售出140瓶,并且当乙种品牌的洗衣液每瓶售价每提高1元时,乙种品牌的洗衣液每天就会少售出2瓶,当乙种品牌的洗衣液的每瓶售价为多少元时,两种品牌的洗衣液每天的利润之和可达到4700元?
19.已知m是方程的一个根,试求的值.
20.用适当的方法解下列方程:
(1)x2-x-1=0;
(2)3x(x-2)=x-2;
(3)x2-2x+1=0;
(4)(x+8)(x+1)=-12.
21.已知关于的一元二次方程.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的两个实数根分别为,,且,求的值.
中小学教育资源及组卷应用平台
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)
参考答案:
1.B
【分析】分别按照看错的情况构建出一元二次方程,再舍去错误信息,从而可得正确答案.
【详解】解: 小红看错了常数项q,得到方程的两个根是﹣3,1,
所以此时方程为: 即:
小明看错了一次项系数P,得到方程的两个根是5,﹣4,
所以此时方程为: 即:
从而正确的方程是:
故选:
【点睛】本题考查的是根据一元二次方程的根构建一元二次方程,掌握利用一元二次方程的根构建方程的方法是解题的关键.
2.A
【分析】根据配方法步骤解题即可.
【详解】解:
移项得,
配方得,
即,
∴a=-4,b=21.
故选:A
【点睛】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.
3.D
【分析】由点P在线段AB上可设点P的坐标为(m,-3m+4)(0<m<),进而可得出OC=m,OD=-3m+4,结合矩形OCPD的面积为1,即可得出关于m的一元二次方程,解之即可得出m的值,再将其代入点P的坐标中即可求出结论.
【详解】解:∵点P在线段AB上(不与点A,B重合),且直线AB的解析式为y=-3x+4,
∴设点P的坐标为(m,-3m+4)(0<m<),
∴OC=m,OD=-3m+4.
∵矩形OCPD的面积为1,
∴m(-3m+4)=1,
∴m1=,m2=1,
∴点P的坐标为(,3)或(1,1).
故选:D.
【点睛】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m的一元二次方程是解题的关键.
4.B
【分析】球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.
【详解】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,
所以可列方程为:x(x﹣1)=4×7.
故选:B.
【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到数量关系列方程.
5.A
【分析】根据一元二次方程有实数根先确定m的取值范围,再根据一元二次方程根与系数的关系得出,把变形为,再代入得方程,求出m的值即可.
【详解】解:∵关于x的一元二次方程有两个实数根,
∴,
∴
∵是方程的两个实数根,
∵,
又
∴
把代入整理得,
解得,
故选A
【点睛】本题考查了根的判别式、根与系数的关系以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)由根与系数的关系结合,找出关于m的一元二次方程.
6.B
【分析】根据一元二次方程的概念(只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程)逐一进行判断即可得.
【详解】解:
A、, 当时,不是一元二次方程,故不符合题意;
B、,是一元二次方程,符合题意;
C、,不是整式方程,故不符合题意;
D、,整理得:,不是一元二次方程,故不符合题意;
故选:B.
【点睛】本题考查了一元二次方程的定义,熟练掌握其定义是解题的关键.
7.A
【分析】根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.
【详解】解:解:∵,是方程的两个实数根,
∴,,
故选A
【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,掌握一元二次方程根与系数的关系是解题的关键.
8.D
【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论.
【详解】A.此方程判别式 ,方程有两个相等的实数根,不符合题意;
B.此方程判别式 方程没有实数根,不符合题意;
C.此方程判别式 ,方程没有实数根,不符合题意;
D .此方程判别式 ,方程有两个不相等的实数根,符合题意;
故答案为: D.
【点睛】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.
9.A
【分析】根据平方的非负性可以得出﹣a≥0,再进行整理即可.
【详解】解:∵方程y2=﹣a有实数根,
∴﹣a≥0(平方具有非负性),
∴a≤0;
故选:A.
【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a≥0.
10.B
【分析】根据根的判别式直接判断即可得出答案.
【详解】解:对于关于x的方程,
∵,
∴此方程有两个不相等的实数根.
故选B.
【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0 方程有两个不相等的实数根;(2)△=0 方程有两个相等的实数根;(3)△<0 方程没有实数根.
11.(答案不唯一)
【分析】设与交点为,根据题意关于y轴对称和二次函数的对称性,可找到的值(只需满足互为相反数且满足即可)即可写出一个符合条件的方程
【详解】设与交点为,
根据题意
则
的对称轴为
故设
则方程为:
故答案为:
【点睛】本题考查了二次函数的对称性,二次函数与一元二次方程的关系,熟悉二次函数的性质和找到两根的对称性类比二次函数的对称性是解题的关键
12.2
【分析】设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,根据花草的种植面积为240m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.
【详解】解:设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,
依题意得:(22-x)(14-x)=240,
整理得:x2-36x+68=0,
解得:x1=2,x2=34(不合题意,舍去).
故答案为:2.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
13.(12-x)(8-x)=77
【分析】道路外的四块土地拼到一起正好构成一个矩形,矩形的长和宽分别是(12-x)和(8-x),根据矩形的面积公式,列出关于道路宽的方程求解.
【详解】道路的宽为x米.依题意得:
(12-x)(8-x)=77,
故答案为(12-x)(8-x)=77.
【点睛】本题考查了一元二次方程的应用,关键将四个矩形用恰当的方式拼成大矩形列出等量关系.
14.3
【分析】先根据一元二次方程的解的定义得到m2+3m-1=0,则3m-1=-m2,根据根与系数的关系得出m+n=-3,再将其代入整理后的代数式计算即可.
【详解】解:∵m是一元二次方程x2+3x-1=0的根,
∴m2+3m-1=0,
∴3m-1=-m2,
∵m、n是一元二次方程x2+3x-1=0的两个根,
∴m+n=-3,
∴,
故答案为:3.
【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程()的两根时,,.也考查了一元二次方程的解.
15.
【分析】根据一元二次方程解的定义将x=1代入即可求出a的值.
【详解】解:∵关于的方程的一个根是
∴
解得:a=-1
故答案为:.
【点睛】此题考查的是根据一元二次方程的解,求参数的值,掌握一元二次方程解的定义是解决此题的关键.
16.
【分析】利用根的判别式,建立关于m的方程求得m的值.
【详解】关于x的一元二次方程的根的判别式的值为4,
∵,,,
,
解得.
故答案为:.
【点睛】本题考查了一元二次方程(a≠0)的根的判别式.
17.x2+x﹣1=0(答案不唯一)
【分析】这是一道开放自主题,只要写出的方程的Δ>0就可以了.
【详解】解:比如a=1,b=1,c=﹣1,
∴Δ=b2﹣4ac=1+4=5>0,
∴方程为x2+x﹣1=0.
故答案为:x2+x﹣1=0(答案不唯一)
【点睛】本题考查了一元二次方程根的判别式,掌握 “根的判别式大于0,方程有两个不相等的实数根”是解题的关键.
18.(1)甲种品牌的洗衣液的进价为30元,乙种品牌的洗衣液的进价为40元
(2)当乙种品牌的洗衣液的每瓶售价为80元时,两种品牌的洗衣液每天的利润之和可达到4700元
【分析】(1)设甲种品牌的洗衣液的进价为x元,乙种品牌的洗衣液的进价为(x+10)元,然后根据题意可列方程进行求解;
(2)设当乙种品牌的洗衣液的每瓶售价为m元时,两种品牌的洗衣液每天的利润之和可达到4700元,然后根据题意可列方程进行求解.
(1)
解:设甲种品牌的洗衣液的进价为x元,乙种品牌的洗衣液的进价为(x+10)元,由题意得:
,
解得:,
经检验:x=30是原方程的解,
∴乙种品牌的进价为:30+10=40(元),
答:甲种品牌的洗衣液的进价为30元,乙种品牌的洗衣液的进价为40元.
(2)
解:设当乙种品牌的洗衣液的每瓶售价为m元时,两种品牌的洗衣液每天的利润之和可达到4700元,由题意得:
整理得:,
解得:,
答:当乙种品牌的洗衣液的每瓶售价为80元时,两种品牌的洗衣液每天的利润之和可达到4700元.
【点睛】本题主要考查分式方程及一元二次方程的应用,解题的关键是找准已知与未知量的等量关系.
19.2015
【分析】先根据一元二次方程的解的定义得到,变形有或,再利用整体思想进行计算.
【详解】解:∵m是方程的一个根,代入即得.
∴或.
∴
.
【点睛】本题考查了一元二次方程的解的定义,解题的关键是适当选择整体代入法,使得解答变得简单.
20.(1),
(2)x1=,x2=2
(3)x1=,x2=
(4)x1=-4,x2=-5
【分析】(1)利用公式法解答,即可求解;
(2)利用因式分解法解答,即可求解;
(3)利用配方法解答,即可求解;
(4)利用因式分解法解答,即可求解.
(1)
解: a=1,b=-1,c=-1
∴b2-4ac=(-1)2-4×1×(-1)=5
∴x==
即原方程的根为x1=,x2=
(2)
解:移项,得3x(x-2)-(x-2)=0,
即(3x-1)(x-2)=0,
∴x1=,x2=2.
(3)
解:配方,得(x-)2=1,
∴x-=±1.
∴x1=+1,x2=-1.
(4)
解:原方程可化为x2+9x+20=0,
即(x+4)(x+5)=0,
∴x1=-4,x2=-5.
【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.
21.(1)见解析
(2)
【分析】(1)根据根的判别式,即可判断;
(2)利用根与系数关系求出,由即可解出,,再根据,即可得到的值.
(1),∵,∴,该方程总有两个不相等的实数根;
(2)方程的两个实数根,,由根与系数关系可知,,,∵,∴,∴,解得:,,∴,即.
【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系.
答案第1页,共2页