第4章 图形的认识
小结与复习
教学目标
1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;
2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;
3.掌握本章的全部定理和公理;
4.理解本章的数学思想方法;
5.了解本章的题目类型.
教学重点和难点
重点是理解本章的知识结构,掌握本章的全部定理和公理;
难点是理解本章的数学思想方法.
教学手段
引导——活动——讨论
教学方法
启发式教学
教学过程
(一)几何图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形
平面图形:三角形、四边形、圆等。
2、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
3、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段
1、基本概念
直线 射线 线段
图形
端点个数 无 一个 两个
表示法 直线a直线AB(BA) 射线AB 线段a线段AB(BA)
作法叙述 作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB
延长叙述 不能延长 反向延长射线AB 延长线段AB;反向延长线段BA
2、直线的性质
经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(1)度量法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段平均分成两条相等线段的点。
图形:
A M B
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。
6、线段的性质
两点的所有连线中,线段最短。简单地:两点之间,线段最短。
7、两点的距离
连接两点的线段长度叫做两点的距离。
8、点与直线的位置关系
(1)点在直线上 (2)点在直线外。
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β 锐角 直角 钝角 平角 周角
范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360°
5、角的比较方法
(1)度量法
(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
8、角的平线线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。
图形:
符号:
9、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角。其中∠1是∠2的余角,∠2是∠1的余角。
(2)若∠1+∠2=180°,则∠1与∠2互为补角。其中∠1是∠2的补角,∠2是∠1的补角。
(3)余(补)角的性质:等角的补(余)角相等。
10、方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
四、课堂练习与作业
1、下列说法中正确的是( )
A、延长射线OP B、延长直线CD C、延长线段CD D、反向延长直线CD
2、下面是我们制作的正方体的展开图,每个平面内都标注了字母,请根据要求回答问题:
(1)和面A所对的会是哪一面?
(2)和B面所对的会是哪一面?
(3)面E会和哪些面相交?
3、 两条直线相交有几个交点?
三条直线两两相交有几个交点?
四条直线两两相交有几个交点?
思考:n条直线两两相交有几个交点?
4、 已知平面内有四个点A、B、C、D,过其中任意两点画直线,最少可画多少条直线,
最多可画多少条直线?画出图来.
5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD的长各为多少?
6、已知线段AB=4厘米,延长AB到C,使B C=2AB,取AC的中点P,求PB的长.