高中数学人教A版(2019)必修第一册5.2三角函数的概念A(Word含答案)

文档属性

名称 高中数学人教A版(2019)必修第一册5.2三角函数的概念A(Word含答案)
格式 zip
文件大小 373.6KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-09-08 10:32:34

图片预览

文档简介

2022年9月6日高中数学作业
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知角α的终边经过点,则等于( )
A. B. C. D.
2.已知是第二象限角,且,则( )
A. B. C. D.
3.若,则( )
A. B.
C. D.
4.设,,则的值为( )
A. B. C. D.
5.若,且,则的值等于( )
A. B. C. D.
6.已知,,则( )
A. B. C. D.
二、多选题
7.若,则终边可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.若是第二象限的角,则下列各式中成立的是( )
A.
B.
C.
D.
E.
三、填空题
9.若的终边上有一点,满足且,则实数n的取值范围是_________.
10.函数的值域是_____.
11.已知点在角的终边上,且,则= _________.
12.已知直线在轴上的截距为4,倾斜角为,且,则直线的斜截式方程为______
四、解答题
13.已知tanα=2,求sinα和cosα的值.
14.已知角的终边经过点,且.
(1)求的值;
(2)求的值
15.已知,其中是第四象限角.
(1)化简;
(2)若,求,.
16.已知角,(,)的顶点与原点重合,始边与轴的非负半轴重合,点,分别在角,的终边上.
(1)设函数,,求函数的值域;
(2)若点在角的终边上,且线段的长度为,求的面积.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.D【分析】由任意角三角函数的定义可得结果.
【详解】依题意得.
故选:D.
2.A【分析】先利用诱导公式对化简,可得的值,再利用同角三角函数的关系可求出的值
【详解】解:因为,所以,
因为是第二象限角,所以,
故选:A
【点睛】此题考查诱导公式和同角三角函数的关系,属于基础题
3.B【分析】确定所在象限,再根据各象限内角的三角函数值的符号判断作答.
【详解】因,则是第二象限象限角,
所以 .
故选:B
4.C【分析】依题意可知,得到,再利用正余弦和差积三者的关系可求得的值,将所求关系式切化弦,代入所求关系式计算即可.
【详解】由,平方得到,



,而,

令,
则,


故选:.
5.A【分析】利用同角三角函数的平方关系化简,求出,进而可得的值.
【详解】等价于,即
分解因式得,则或(舍)

故选:A
【点睛】本题考查同角三角函数的关系,考查一元二次方程的解法,属于基础题.
6.A【分析】将题设条件等式两边平方,可得,再将目标式平方并结合角的范围即可求.
【详解】,则,
而,又,
∴,则.
故选:A
7.BD【分析】根据角的终边所在限象的三角函数符号,即可得到结果.
【详解】因为,
若,则终边在第二象限;
若,则终边在第四象限;
故选:BD.
8.BC【解析】利用,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.
【详解】对A,由同角三角函数的基本关系式,知,所以A错;
对B,C,D,E,因为是第二象限角,所以,所以的符号不确定,所以,所以B,C正确;D,E错.
故选:BC.
【点睛】本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力.
9.【分析】由且,判断出此点是第二象限中的点,可实数的取值范围
【详解】解:由题意的终边上有一点,满足且,故此点是第二象限中的点
,且
故答案为:.
10.【分析】先求函数的定义域,然后分象限讨论正负,即可.
【详解】的定义域为
当x为第一象限角时,,
∴;
当x为第二象限角时,,
∴;
当x为第三象限角时,,
∴;
当x为第四象限角时,,
∴;
故答案为:
11.【分析】由条件判断出为第三象限角,然后可求出答案.
【详解】因为点在角的终边上,且
所以为第三象限角
所以
故答案为:
12.【分析】先求出直线的斜率,即可写出直线的方程.
【详解】因为直线的倾斜角为,且,所以,
所以直线的斜率
又直线在在轴上的截距为4,所以直线方程为.
故答案为:.
13.当α是第一象限角,则cosα=, sinα=;
当α是第三象限角,则cosα=-, sinα=-.【分析】利用同角三角函数的基本关系即可求解.
【详解】解 由=tanα=2,可得sinα=2cosα.
又sin2α+cos2α=1,故(2cosα)2+cos2α=1,解得cos2α=.
又由tanα=2>0,知α是第一或第三象限角.
当α是第一象限角,则cosα=, sinα=;
当α是第三象限角,则cosα=-, sinα=-.
14.(1);(2)详见解析.【解析】(1)根据三角函数的定义,先求得点到原点的距离,再根据求解.
(2)根据(1)的结果,利用三角函数的定义求解.
【详解】(1)因为角的终边经过点,
所以该点到原点的距离为,
又因为,
解得;
(2)由(1)得,当时,,
所以.
当时,
所以.
【点睛】本题主要考查三角函数定义求值,还考查了运算求解的能力,属于基础题.
15.(1)
(2),
【分析】(1)因为是第四象限角,即可得到,,再根据平方关系化简可得;
(2)依题意可得,再根据同角三角函数的基本关系求出;
(1)
解:∵是第四象限角,∴,,所以、,


即;
(2)
解:∵,∴,
∴.
16.(1)
(2)
【分析】(1)先由任意角三角函数的定义结合的取值范围确定的大小,再求的值域(2)先由任意角三角函数的定义结合的取值范围确定的大小,从而求出的大小,再利用余弦定理,求出的长度,确定出点在上的位置之后,即可求的面积
(1)
∵的终边过点,∴,.
∵,∴.
则,
∵,∴,∴,∴,
即的值域是.
(2)
∵的终边过点,
∴,.
∵,∴,∴.
由余弦定理可得,,
∴,解得.
∵,∴为的中点,
∴则的面积
答案第1页,共2页
答案第1页,共2页