§4.4 一次函数的应用(二)
【学习目标】
1.能通过函数图象获取信息,解决简单的实际问题;
2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
【学习重点】一次函数图象的应用
【学习难点】从函数图象中正确读取信息
【学习过程】
二、 预学
1、提出问题,创设情境
问题(一):由于持续高温和连日无雨,某水库的蓄水量随着时间的增加
而减少.干旱持续时间t (天)与蓄水量V (万米3)的关系如下图
所示,回答下列问题:
(1)干旱持续10天后,蓄水量为 万米3,连续干旱20天后,蓄水量为 万米3;
(2)蓄水量小于400万米3时,将发生严重干旱警报.干旱 天后将发出严重干旱警报;
(3)按照这个规律,预计持续干旱 天水库将干涸。
2、目标导引,预学探究
问题(二):2.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)之间的关系如图所示.根据图象回答下列问题:
(1)一箱汽油可供摩托车行驶 千米;
(2)摩托车每行驶100千米消耗 升汽油;
(3)油箱中的剩余油量小于1升时,摩托车将自动报警,
行驶多少千米后,摩托车将自动报警?
3、问题清单(预学后,你还有那些没弄懂的问题,请列举在下面):
二、 研学(合作发现,交流展示)
探究一:看图填空:
(1)当y=0时,x= ;
(2)直线对应的函数表达式是________________.
探究二:一元一次方程与一次函数的联系
议一议:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?
1、 评学
1、 积累与巩固
(1)完成课本92页1---3题
(2)某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程.盒内钱数y (元)与存钱月数x之间的函数关系如图所示.观察图象回答下列问题:
(1)盒内原来有 元,2个月后盒内有 元;
(2)该同学经过 个月能存够200元;
(3)该同学至少存 个月存款才能超过140元.
2、拓展延伸:
一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零
钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数x与他手
中持有的钱数y(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是 元;
(2)当售出30千克土豆时,他手中持有的钱为 元,新收入了 元钱;降价前每千克土豆的价钱是 元;降价前y与x之间的关系式是 ;
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆
【小结】:通过本课的学习,你掌握了那些知识?获得了那些技能?你还存在什么疑问?
第17页