2022-2023学年高一数学同步优品讲练课件(人教A版2019必修第一册)1.3 集合的基本运算(第2课时 全集与补集)(共28张PPT)

文档属性

名称 2022-2023学年高一数学同步优品讲练课件(人教A版2019必修第一册)1.3 集合的基本运算(第2课时 全集与补集)(共28张PPT)
格式 pptx
文件大小 1.3MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-09-10 22:35:53

图片预览

文档简介

(共28张PPT)
第一章 集合与常用逻辑用语
1.3 集合的基本运算
榆次一中 数学教研组
课时2 全集与补集
学习目标
1.理解全集、补集的概念.(数学抽象)
2.准确使用补集符号和 图.(直观想象)
3.会求补集,并能解决一些集合综合运算的问题.(数学运算)
自主预习·悟新知
合作探究·提素养
随堂检测·精评价
1.已知 ,求 .
[答案] .
2.设 ,求 .
[答案] .
3.方程 在有理数范围内的解是什么?在实数范围内的解是什么?
[答案] 在有理数范围内的解是 ,在无理数范围内的解是 .
预学忆思
自主预习·悟新知
YUCI NO.1 MIDDLE SCHOOL
4.若 ,则用集合 怎么表示出集合
[答案] .
1.判断下列结论是否正确.(正确的打“√”,错误的打“×”)
(1) 全集是由任何元素组成的集合.( )
×
(2) 不同的集合在同一个全集中的补集也不同.( )

(3) 集合 与 相等.( )
×
(4) 集合 与集合 在全集 中的补集没有公共元素.( )

自学检测
2.已知全集 ,且 ,则 ( @9@ ).
A. B. C. D.
D
[解析] 根据补集定义可知D正确.
3.若全集 ,集合 , ,则 ( @11@ ).
A. B. C. D.
D
[解析] ∵集合 , , ,又全集 ,∴ .故选D.
4.设全集为 , , ,则 _________.

[解析] .
探究1 补集
观察下列三个集合:


.
情境设置
合作探究·提素养
YUCI NO.1 MIDDLE SCHOOL
问题1:.如何确定高一年级的同学中谁参加了军训?
[答案] 如果我们直接去统计张三、李四、王五等人谁参加了军训,这样做可就麻烦多了.若确定出没有参加军训的同学,则剩下的同学就都参加了军训,问题可就简单多了.
问题2:.集合 与集合 之间有什么关系?
[答案] .
问题3:.如何在全集 中研究相关集合 之间的关系呢?
[答案] 由所有属于集合 但不属于集合 的元素组成的集合就是集合 .
新知生成
1.全集
(1) 定义:如果一个集合含有我们所研究问题中涉及的___________,那么就称这个集合为全集.
所有元素
(2) 符号表示:全集通常记作____.

2.补集
(1) 文字语言:对于一个集合 ,由全集 中_______________的所有元素组成的集合称为集合 相对于全集 的补集,简称为集合 的补集,记作_______.
不属于集合

(2) 符号语言: ________________ .
,且
(3)图形语言:
(4) 性质:① ;
② ____, ____;
③ ____;
④ ____, ____.





新知运用
例1
(1) 已知全集 , ,则 ( @28@ ).
A. B. C. D.
C
[解析] 因为全集 , ,所以根据补集的定义得 .
(2) 已知全集 ,集合 , ,则 _________________.

[解析] 因为 或 ,所以 或 .
方法总结 补集的求解步骤及方法
(1)步骤:①确定全集,在进行补集的简单运算时,应首先明确全集;②紧扣定义求解补集.
(2)方法:①借助 图或数轴求解;②借助补集的性质求解.
1.设集合 , 或 ,则 ( @32@ ).
A. B.
C. 或 D. 或
A
[解析] 如图,在数轴上表示出集合 ,可知 .
巩固训练
2.设集合 , ,若 ,则实数 的取值范围是___________.

[解析] 由 可知, ,则实数 的取值范围为 .
探究2 集合并、交、补集的综合运算
某城镇有1000户居民,其中819户有彩电,682户有空调,535户两种家电都有.设这1000户居民组成的集合为全集 ,其中有彩电的居民组成的集合为 ,有空调的居民组成的集合为B.请用集合表示出下列问题,并回答各有多少户.
问题1:.既有彩电又有空调的居民.
[答案] 既有彩电又有空调的居民组成的集合为 ,有535户.
情境设置
问题2:.彩电和空调至少有一种的居民.
[答案] 彩电和空调至少有一种的居民组成的集合为 ,有 户.
问题3:.有彩电无空调的居民.
[答案] 有彩电无空调的居民组成的集合为 ,有 户.
问题4:.有空调无彩电的居民.
[答案] 有空调无彩电的居民组成的集合为 ,有 户.
问题5:.无空调无彩电的居民.
[答案] 无空调无彩电的居民组成的集合为 ,有 户.
新知生成
设集合 为全集,集合 是集合 的子集,则
(1)
(2) .
新知运用
例2
(1) 已知全集 , , ,则集合
( @41@ ).
A. B. C. D.
D
[解析] , .故选D.
(2) 设集合 , ,则 ( @43@ ).
A. B. C. D.
C
[解析] 因为 ,所以 或 .
因为 ,
所以 ,故选C.
方法总结 解决集合的混合运算问题时,一般先计算括号内的部分,再计算其他部分.有限混合运算可借助 图求解,与不等式有关的集合运算可借助数轴求解.
1.若全集 ,集合 , ,则 ( @45@ ).
A. B. C. D.
C
[解析] ∵全集 , ,∴ ,又 , .故选C.
2.已知集合 , ,则 ( @47@ ).
A. B. C. D.
A
[解析] 因为集合 ,所以 ,则 .
巩固训练
1.设集合 , ,则 等于( @49@ ).
A. B. C. D.
C
[解析] 因为 , ,所以 .故选C.
随堂检测·精评价
YUCI NO.1 MIDDLE SCHOOL
2.已知集合 , , 及集合间的关系如图所示,则 等于( @51@ ).
A. B. C. D.
C
[解析] 由 图易得 .
3.已知全集 ,集合 , ,则集合 ( @53@ ).
A. B. C. D.
A
[解析] 因为 ,所以 .
4.设全集为 ,求 .
[解析] 把集合 , 在数轴上表示如下,
由图知, ,
所以 或 .
因为 或 ,
所以 或 .