2022-2023学年人教版八年级数学上册《12.2三角形全等的判定》同步测试题(附答案)
一.选择题(共10小题,满分40分)
1.如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )
A.SSS B.SAS C.AAS D.HL
2.如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是( )
A.SAS B.AAS C.SSS D.ASA
3.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为( )
A.4 B.3 C.2 D.1
4.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是( )
A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC
5.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )
A.a+c B.b+c C.a﹣b+c D.a+b﹣c
6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )
A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD
7.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为( )
A. B. C. D.
8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:
①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( )
A.0个 B.1个 C.2个 D.3个
9.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )
A.4cm B.6cm C.8cm D.9cm
10.如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是( )
A.24 B.22 C.20 D.18
二.填空题(共10小题,满分40分)
11.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是 (只填序号).
12.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为 .
13.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件 使得△ABC≌△DEF.
14.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .
15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.
16.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.
17.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= 度.
18.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=21°,∠2=30°,∠3= .
19.如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO= 度.
20.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是 .(只填一个即可)
三.解答题(共5小题,满分40分)
21.如图,在五边形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线.
(1)求证:△ABE≌△DCE;
(2)当∠A=80°,∠ABC=140°时,求∠AED的度数.
22.如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.
23.校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中AB=CD=2米,AD=BC=3米,∠B=30°.
(1)求证:△ABC≌△CDA;
(2)求草坪造型的面积.
24.如图,点D、E分别是AB、AC的中点,BE、CD相交于点O,∠B=∠C,BD=CE.
求证:(1)OD=OE;
(2)△ABE≌△ACD.
25.如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.
参考答案
一.选择题(共10小题,满分40分)
1.解:在△AOB和△DOC中,
,
∴△AOB≌△DOC(SAS),
故选:B.
2.解:∵AB=DC,∠ABC=∠DCB,BC=CB,
∴△ABC≌△DCB(SAS),
故选:A.
3.解:∵∠AOB=∠COD=40°,
∴∠AOB+∠AOD=∠COD+∠AOD,
即∠AOC=∠BOD,
在△AOC和△BOD中,,
∴△AOC≌△BOD(SAS),
∴∠OCA=∠ODB,AC=BD,①正确;
∴∠OAC=∠OBD,
由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,
∴∠AMB=∠AOB=40°,②正确;
作OG⊥MC于G,OH⊥MB于H,如图2所示:
则∠OGC=∠OHD=90°,
在△OCG和△ODH中,,
∴△OCG≌△ODH(AAS),
∴OG=OH,
∴MO平分∠BMC,④正确;
∵∠AOB=∠COD,
∴当∠DOM=∠AOM时,OM才平分∠BOC,
假设∠DOM=∠AOM
∵∠AOB=∠COD,
∴∠COM=∠BOM,
∵MO平分∠BMC,
∴∠CMO=∠BMO,
在△COM和△BOM中,,
∴△COM≌△BOM(ASA),
∴OB=OC,
∵OA=OB
∴OA=OC
与OA>OC矛盾,
∴③错误;
正确的个数有3个;
故选:B.
4.解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.
B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;
C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;
D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;
故选:B.
5.解:∵AB⊥CD,CE⊥AD,BF⊥AD,
∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,
∴∠A=∠C,∵AB=CD,
∴△ABF≌△CDE,
∴AF=CE=a,BF=DE=b,
∵EF=c,
∴AD=AF+DF=a+(b﹣c)=a+b﹣c,
故选:D.
6.解:∵AB=AC,∠A为公共角,
A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;
B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;
C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;
D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.
故选:D.
7.解:作AF⊥CB交CB的延长线于F,在CF的延长线上取一点G,使得FG=DE.
∵AD∥BC,
∴∠BCD+∠ADC=180°,
∴∠ADC=∠BCD=∠AFC=90°,
∴四边形ADCF是矩形,
∵∠CAD=45°,
∴AD=CD,
∴四边形ADCF是正方形,
∴AF=AD,∠AFG=∠ADE=90°,
∴△AFG≌△ADE,
∴AG=AE,∠FAG=∠DAE,
∴∠FAG+∠FAB=∠EAD+∠FAB=45°=∠BAE,
∴△BAE≌△BAG,
∴BE=BG=BF+GF=BF+DE,
设BC=a,则AB=4+a,BF=4﹣a,
∴a=1,
∴BC=1,BF=3,设BE=b,则DE=b﹣3,CE=4﹣(b﹣3)=7﹣b.
∴BG=BE=,
∴S△ABE=S△ABG=××4=.
8.解:在△ABD与△CBD中,
,
∴△ABD≌△CBD(SSS),
故③正确;
∴∠ADB=∠CDB,
在△AOD与△COD中,
,
∴△AOD≌△COD(SAS),
∴∠AOD=∠COD=90°,AO=OC,
∴AC⊥DB,
故①②正确;
故选:D.
9.解:∵F是高AD和BE的交点,
∴∠ADC=∠ADB=∠AEF=90°,
∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,
∵∠AFE=∠BFD,
∴∠CAD=∠FBD,
∵∠ADB=90°,∠ABC=45°,
∴∠BAD=45°=∠ABD,
∴AD=BD,
在△DBF和△DAC中
∴△DBF≌△DAC(ASA),
∴BF=AC=8cm,
故选:C.
10.解:∵CG∥AB,
∴∠B=∠MCG,
∵M是BC的中点,
∴BM=CM,
在△BMH和△CMG中,
,
∴△BMH≌△CMG(ASA),
∴HM=GM,BH=CG,
∵AB=6,AC=8,
∴四边形ACGH的周长=AC+CG+AH+GH=AB+AC+GH=14+GH,
∴当GH最小时,即MH⊥AB时四边形ACGH的周长有最小值,
∵∠A=90°,MH⊥AB,
∴GH∥AC,
∴四边形ACGH为矩形,
∴GH=8,
∴四边形ACGH的周长最小值为14+8=22,
故选:B.
二.填空题(共10小题,满分40分)
11.解:∵已知∠ABC=∠DCB,且BC=CB
∴若添加①∠A=∠D,则可由AAS判定△ABC≌△DCB;
若添加②AC=DB,则属于边边角的顺序,不能判定△ABC≌△DCB;
若添加③AB=DC,则属于边角边的顺序,可以判定△ABC≌△DCB.
故答案为:②.
12.解:法一、如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;
∵∠BAD=∠BCD=90°
∴四边形AMCN为矩形,∠MAN=90°;
∵∠BAD=90°,
∴∠BAM=∠DAN;
在△ABM与△ADN中,
,
∴△ABM≌△ADN(AAS),
∴AM=AN(设为λ);△ABM与△ADN的面积相等;
∴四边形ABCD的面积=正方形AMCN的面积;
由勾股定理得:AC2=AM2+MC2,而AC=6;
∴2λ2=36,λ2=18,
法二、如图,延长CB到点E,使BE=CD,连接AE,
∴∠ABE+∠ABC=180°,
∵∠BAD=∠BCD=90°,
∴∠D+∠ABC=180°,
∴∠D=∠ABE,
∵AD=AB,BE=BC,
∴△ABE≌△ADC(SAS),
∴∠EAB=∠DAC,AE=AC,△ABM与△ADN的面积相等;
∴∠CAB+∠EAB=∠BAC+∠DAC=90°,即∠EAC=90°,
∴△EAC是等腰直角三角形,
∴四边形ABCD的面积=△EAC的面积=×62=18;
故答案为:18.
13.解:添加∠A=∠D.理由如下:
∵FB=CE,
∴BC=EF.
又∵AC∥DF,
∴∠ACB=∠DFE.
∴在△ABC与△DEF中,,
∴△ABC≌△DEF(AAS).
故答案是:∠A=∠D.
14.解:△ABE和△ACD中,
,
∴△ABE≌△ACD(AAS),
∴AD=AE=2,AC=AB=5,
∴CE=BD=AB﹣AD=3,
故答案为3.
15.解:∵∠ACB=90°,
∴∠ECF+∠BCD=90°,
∵CD⊥AB,
∴∠BCD+∠B=90°,
∴∠ECF=∠B(等角的余角相等),
在△FCE和△ABC中,,
∴△ABC≌△FEC(ASA),
∴AC=EF,
∵AE=AC﹣CE,BC=2cm,EF=5cm,
∴AE=5﹣2=3cm.
故答案为:3.
16.解:∵AD⊥BC于D,BE⊥AC于E
∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,
又∵∠BFD=∠AFE(对顶角相等)
∴∠EAF=∠DBF,
在Rt△ADC和Rt△BDF中,
,
∴△ADC≌△BDF(AAS),
∴BD=AD,
即∠ABC=∠BAD=45°.
故答案为:45.
17.解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,
∴∠1+∠3=90°,
又∠2=45°,
∴∠1+∠2+∠3=135°.
18.解:∵∠BAC=∠DAE,∠BAC=∠1+∠DAC,∠DAE=∠DAC+∠CAE,
∴∠1=∠CAE.
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴∠ABD=∠2=30°.
∵∠3=∠1+∠ABD=21°+30°=51°.
故答案为:51°.
19.解:方法一:∵OM⊥AB,ON⊥BC,
∴∠OMB=∠ONB=90°,
在Rt△OMB和Rt△ONB中,
,
∴Rt△OMB≌Rt△ONB(HL),
∴∠OBM=∠OBN,
∵∠ABC=30°,
∴∠ABO=15°.
方法二:∵OM⊥AB,ON⊥BC,
又∵OM=ON,
∴OB平分∠ABC,
∴∠OBM=∠OBN,
∵∠ABC=30°,
∴∠ABO=15°.
故答案为:15.
20.解:∵∠DAB=∠CAB,AB=AB,
∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;
当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;
当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.
故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).
三.解答题(共5小题,满分40分)
21.(1)证明:∵BE,CE分别是∠ABC,∠BCD的角平分线.
∴∠ABE=∠CBE,∠BCE=∠DCE,
∵∠ABC=∠BCD,
∴∠ABE=∠DCE,∠EBC=∠ECB,
∴BE=CE,
在△ABE和△DCE中,
,
∴△ABE≌△DCE(SAS);
(2)解:∵△ABE≌△DCE,
∴∠A=∠D=80°,
∵∠ABC=140°,
∴∠ABC=∠BCD=140°,
∵五边形ABCDE的内角和是540°,
∴∠AED=540°﹣∠A﹣∠D﹣∠ABC﹣∠BCD=540°﹣80°﹣80°﹣140°﹣140°=100°.
22.证明:∵DE⊥AC,∠B=90°,
∴∠DEC=∠B=90°,
∵CD∥AB,
∴∠A=∠DCE,
在△CED和△ABC中,
,
∴△CED≌△ABC(ASA).
23.(1)证明:在△ABC和△CDA中,
∵,
∴△ABC≌△CDA(SSS);
(2)解:过点A作AE⊥BC于点E,
∵AB=2米,∠B=30°,
∴AE=1米,
∴S△ABC=×3×1=(平方米),
则S△CDA=(平方米),
∴草坪造型的面积为:2×=3(平方米).
24.证明:(1)在△BOD和△COE中,
,
∴△BOD≌△COE(AAS),
∴OD=OE;
(2)∵点D、E分别是AB、AC的中点,
∴AD=BD=AB,AE=CE=AC,
∵BD=CE.
∴AD=AE,AB=AC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS).
25.证明:∵∠BAE=∠CAD,
∴∠BAE+∠BAD=∠CAD+∠BAD,
即∠DAE=∠CAB,
在△ADE和△ACB中,
,
∴△ADE≌△ACB(SAS),
∴DE=CB.