2022-2023学年人教版八年级数学上册《12.2三角形全等的判定》同步练习题(附答案)
一.选择题
1.如图,∠C=∠F=90°,下列条件中,不能判定△ACB与△DFE全等的是( )
A.∠A=∠D,AB=DE B.AC=DF,BC=EF
C.AB=DE,BC=EF D.∠A=∠D,∠B=∠E
2.如图,在四边形ABCD中,∠ACB=∠DAC,添加一个条件后不能保证△BAC≌△DCA的是( )
A.AB∥CD B.∠B=∠D C.AB=CD D.AD=BC
3.如图,用纸板挡住了三角形的一部分,小明根据所学知识很快就重新画出了一个与原来完全一样的三角形,他的依据是( )
A.SSS B.SAS C.AAS D.ASA
4.如图,要测量河两岸相对的两点A、B的距离,先在河岸BF上取两点C、D,使CD=BC,再作DE⊥BF,垂足为D,使A、C、E三点在一条直线上,测得ED=30米,因此AB的长是( )
A.10米 B.20米 C.30米 D.40米
5.如图,∠1=∠2,∠3=∠4,则判定△ABD和△ACD全等的依据是( )
A.SSS B.ASA C.SAS D.HL
6.如图为正方形网格,则∠1+∠2+∠3=( )
A.105° B.120° C.115° D.135°
7.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是( )
A.∠B=∠D B.BC=DE C.∠1=∠2 D.AB=AD
8.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )
A.SSS B.SAS C.ASA D.AAS
9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=( )
A.55° B.50° C.45° D.60°
10.如图,∠1=∠2,补充一个条件后仍不能判定△ABC≌△ADC是( )
A.AB=AD B.∠B=∠D C.BC=DC D.∠BAC=∠DAC
11.根据下列条件,能画出唯一△ABC的是( )
A.AB=3,BC=4,CA=7 B.AC=4,BC=3.5,∠A=60°
C.∠A=45°,∠B=60°,∠C=75° D.AB=5,BC=4,∠C=90°
二.填空题
12.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为 .
13.如图,AB⊥BC,AD⊥DC,垂足分别为B,D.只需添加一个条件即可证明△ABC≌△ADC,这个条件可以是 .(写出一个即可)
14.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 块.
15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC交CD的延长线于点F.若AE=3cm,则EF= cm.
16.如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO= 度.
三.解答题
17.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.
18.如图,点E,F在线段AD上,AB∥CD,∠B=∠C,BE=CF.求证:AF=DE.
19.如图,点D、F分别为AC、BC的中点,AB=CD,AC=DE,求证:BC=CE.
20.已知:如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.
21.如图,在五边形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线.
(1)求证:△ABE≌△DCE;
(2)当∠A=80°,∠ABC=140°时,求∠AED的度数.
22.已知:如图,BE⊥CD于点E,BE=DE,BC=DA.
(1)求证:△BCE≌△DAE;
(2)判断DF与BC的位置关系,并说明理由.
23.如图,∠A=∠B,AE=BE,∠1=∠2,点D在AC边上.
(1)求证:△AEC≌△BED.
(2)若∠1=40°,求∠BDE的度数.
24.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.
25.如图,点B、F、C、E在同一条直线上,AB=DE,AC=DF,BF=EC.
求证:∠A=∠D.
26.如图,E为BC上一点,AC∥BD,AC=BE,∠ABC=∠D.求证:AB=ED.
27.如图,已知AB=AC,E为AB上一点,ED∥AC,ED=AE.求证:BD=CD.
28.如图,在△ABC中,点D为BC上一点,E、F两点分别在边AB、AC上,若BE=CD,BD=CF,∠B=∠C,∠A=50°,求∠EDF的度数.
29.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.
求证:AD平分∠BAC.
参考答案
一.选择题
1.解:A.∠A=∠D,∠C=∠F,AB=DE,符合全等三角形的判定定理AAS,能推出△ACB≌△DFE,故本选项不符合题意;
B.AC=DF,∠C=∠F,BC=EF,符合全等三角形的判定定理SAS,能推出△ACB≌△DFE,故本选项不符合题意;
C.AB=DF,BC=EF,∠C=∠F=90°,符合直角三角形全等的判定定理HL,能推出△ACB≌△DFE,故本选项不符合题意;
D.∠A=∠D,∠C=∠F,∠B=∠E,不符合全等三角形的判定定理,不能推出△ACB≌△DFE,故本选项符合题意;
故选:D.
2.解:∵∠ACB=∠DAC,AC=CA,
∴当添加AB∥CD时,∠BAC=∠DCA,则可根据“ASA”判断△BAC≌△DCA;
当添加∠B=∠D时,则可根据“AAS”判断△BAC≌△DCA;
当添加AD=BC时,则可根据“SAS”判断△BAC≌△DCA.
故选:C.
3.解:如图,
只要量出AB的长和∠A和∠B的度数,再画出一个三角形DEF,使EF=AB,∠E=∠A,∠F=∠B即可,
故选:D.
4.解:∵BF⊥AB,DE⊥BF,
∴∠ABC=∠BDE
在△EDC和△ABC中,
,
∴△EDC≌△ABC(ASA).
∴ED=AB.
∵ED=30米,
∴AB=30米.
故选:C.
5.解:∵在△ABD和△ACD中,
,
∴△ABD≌△ACD(ASA),
故选:B.
6.解:∵在△ABC和△AEF中,,
∴△ABC≌△AEF(SAS),
∴∠4=∠3,
∵∠1+∠4=90°,
∴∠1+∠3=90°,
∵AD=MD,∠ADM=90°,
∴∠2=45°,
∴∠1+∠2+∠3=135°,
故选:D.
7.解:A、添加∠B=∠D,由“AAS”可证△ABC≌△ADE,故选项A不合题意;
B、添加BC=DE,由“SAS”可证△ABC≌△ADE,故选项B不合题意;
C、添加∠1=∠2,由“ASA”可证△ABC≌△ADE,故选项C不合题意;
D、添加AB=AD,不能证明△ABC≌△ADE,故选项D符合题意;
故选:D.
8.解:∵在△ONC和△OMC中,
∴△MOC≌△NOC(SSS),
∴∠BOC=∠AOC,
故选:A.
9.解:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠1=∠EAC,
在△BAD和△EAC中,,
∴△BAD≌△EAC(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
故选:A.
10.解:A.若添加AB=AD,不能判定△ABC≌△ADC,
故A符合题意;
B.若添加∠B=∠D,
证明:∵∠1=∠2,
∴∠ACB=∠ACD,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(AAS),
故B不符合题意;
C.若添加BC=DC,
证明:∵∠1=∠2,
∴∠ACB=∠ACD,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(SAS),
故C不符合题意;
D.若添加∠BAC=∠DAC,
证明:∵∠1=∠2,
∴∠ACB=∠ACD,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(ASA),
故D不符合题意;
故选:A.
11.解:A、不满足三边关系,本选项不符合题意.
B、边边角三角形不能唯一确定.本选项不符合题意.
C、没有边的条件,三角形不能唯一确定.本选项不符合题意.
D、斜边直角边三角形唯一确定.本选项符合题意.
故选:D.
二.填空题
12.解:设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:
情况一:当BE=AG,BF=AE时,
∵BF=AE,AB=100,
∴3t=100﹣2t,
解得:t=20,
∴AG=BE=2t=2×20=40;
情况二:当BE=AE,BF=AG时,
∵BE=AE,AB=100,
∴2t=100﹣2t,
解得:t=25,
∴AG=BF=3t=3×25=75,
综上所述,AG=40或AG=75.
故答案为:40或75.
13.解:若添加AB=AD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;
若添加BC=CD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;
若添加∠BAC=∠DAC,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;
若添加∠BCA=∠DCA,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;
故答案为:AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD(答案不唯一).
14.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,
只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.
故答案为:2.
15.解:∵CD⊥AB,EF⊥AC,
∴∠FEC=∠ADC=∠ACB=90°,
∴∠ACD+∠A=∠ACD+∠F=90°,
∴∠A=∠F.
∵BC=EC=2cm,
在△ABC和△FCE中
,
∴△ABC≌△FCE(SAS),
∴AC=FE.
∵AC=AE+EC,
∴FE=AE+EC.
∵EC=2cm,AE=3cm,
∴FE=2+3=5cm.
故答案为:5
16.解:方法一:∵OM⊥AB,ON⊥BC,
∴∠OMB=∠ONB=90°,
在Rt△OMB和Rt△ONB中,
,
∴Rt△OMB≌Rt△ONB(HL),
∴∠OBM=∠OBN,
∵∠ABC=30°,
∴∠ABO=15°.
方法二:∵OM⊥AB,ON⊥BC,
又∵OM=ON,
∴OB平分∠ABC,
∴∠OBM=∠OBN,
∵∠ABC=30°,
∴∠ABO=15°.
故答案为:15.
三.解答题
17.证明:∵∠A=∠D=90°,AC=BD,BC=BC,
∴Rt△BAC≌Rt△CDB(HL)
∴∠ACB=∠DBC.
∴∠OCB=∠OBC.
∴OB=OC(等角对等边).
18.证明:∵AB∥CD,
∴∠A=∠D,
在△ABE和△DCF中,
,
∴△ABE≌△DCF(AAS),
∴AE=DF,
∴AE﹣EF=DF﹣EF,
∴AF=DE.
19.证明:∵D、F分别为AC、BC的中点,
∴DF∥AB,
∴∠A=∠CDE,
在△ABC和△DCE中,
,
∴△ABC≌△DCE(SAS),
∴BC=CE.
20.证明:∵BE=CF,
∴BE+EF=CF+EF,
∴BF=CE,
在△ABF和△DCE中,
,
∴△ABF≌△DCE(SAS),
∴∠A=∠D.
21.(1)证明:∵BE,CE分别是∠ABC,∠BCD的角平分线.
∴∠ABE=∠CBE,∠BCE=∠DCE,
∵∠ABC=∠BCD,
∴∠ABE=∠DCE,∠EBC=∠ECB,
∴BE=CE,
在△ABE和△DCE中,
,
∴△ABE≌△DCE(SAS);
(2)解:∵△ABE≌△DCE,
∴∠A=∠D=80°,
∵∠ABC=140°,
∴∠ABC=∠BCD=140°,
∵五边形ABCDE的内角和是540°,
∴∠AED=540°﹣∠A﹣∠D﹣∠ABC﹣∠BCD=540°﹣80°﹣80°﹣140°﹣140°=100°.
22.证明:(1)∵BE⊥CD,
∴∠BEC=∠DEA=90°,
在Rt△BCE与Rt△DAE中,
,
∴Rt△BCE≌Rt△DAE(HL);
(2)解:DF⊥BC.
理由如下:∵由(1)知,△BCE≌△DAE,
∴∠B=∠D.
∵∠D+∠DAE=90°,∠DAE=∠BAF,
∴∠BAF+∠B=90°,
∴∠BFA=90°,
即DF⊥BC.
23.(1)证明:∵∠1=∠2,
∴∠1+∠AED=∠2+∠AED,
∴∠AEC=∠BED,
在△AEC和△BED中
∴△AEC≌△BED(ASA);
(2)∵△AEC≌△BED,
∴ED=EC,∠ACE=∠BDE,
∴∠ECD=∠EDC,
∵∠1=40°,
∴∠ECD=∠EDC=70°,
∴∠ECA=70°,
∴∠BDE=70°,
即∠BDE是70°.
24.证明:∵CE∥DF,
∴∠ACE=∠D,
在△ACE和△FDB中,
,
∴△ACE≌△FDB(SAS),
∴AE=FB.
25.证明:∵BF=EC,
∴BF+FC=EC+CF.
即BC=EF.
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SSS).
∴∠A=∠D.
26.证明:∵AC∥BD,
∴∠C=∠EBD,
在△ABC与△EDB中,
,
∴△ABC≌△EDB(AAS),
∴AB=ED.
27.证明:∵ED∥AC,
∴∠EDA=∠DAC,
∵ED=AE,
∴∠EAD=∠EDA,
∴∠EAD=∠DAC,
在△ADB和△ADC中,
∴△ADB≌△ADC(SAS),
∴BD=CD.
28.解:在△BDE和△CFD中,
∴△BDE≌△CFD(SAS),
∴∠BDE=∠CFD,
∵∠BDE+∠CDF+∠EDF=180°,
∴∠CFD+∠CDF+∠EDF=180°,
∵∠CFD+∠CDF+∠C=180°,
∴∠EDF=∠C.
∵∠B=∠C,∠A=50°,
∴∠EDF=∠C=(180°﹣50°)=65°.
29.证明:∵D是BC的中点,
∴BD=CD,
又∵BE=CF,DE⊥AB,DF⊥AC,
∴Rt△BDE≌Rt△CDF,
∴DE=DF,
∴点D在∠BAC的平分线上,
∴AD平分∠BAC.