2022-2023人教版八年级上册数学第十一章
11.3多边形的内角和 常考易错习题检测(附带答案)
一.选择题(共10小题)
1.若一个正多边形的每个内角都是120°,则这个正多边形是( )
A.正六边形 B.正七边形 C.正八边形 D.正九边形
2.如图,已知∠1+∠2+∠3=240°,那么∠4的度数为( )
A.60° B.120° C.130° D.150°
3.若正多边形的一个外角等于45°,则这个正多边形的内角和的度数为( )
A.1080° B.1260° C.1350° D.1440°
4.将一个n边形变成(n+2)边形,外角和将( )
A.增加360° B.减少360° C.增加180° D.不变
5.小丽利用最近学习的数学知识,给同伴出了这样一道题:假如从点A出发,沿直线走6米后向左转θ,接着沿直线前进6米后,再向左转θ……如此下法,当他第一次回到A点时,发现自己走了72米,θ的度数为( )
A.28° B.30° C.33° D.36°
6.下列多边形中,内角和是540°的是( )
A. B.
C. D.
7.已知一个n边形的内角和等于1800°,则n=( )
A.6 B.8 C.10 D.12
8.若一个多边形的内角和为360°,则这个多边形的边数是( )
A.3 B.4 C.5 D.6
9.如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为( )
A.180° B.270° C.360° D.450°
10.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=( )
A.10° B.15° C.30° D.40°
二.填空题(共5小题)
11.已知一个多边形的内角和比外角和多180°,则它的边数为 .
12.若n边形内角和是外角和的3倍,则n= .
13.如图所示,∠1+∠2+∠3+∠4+∠5+∠6= .
14.如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为 .
15.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出 个三角形.
解答题(共5小题)
16.在各个内角都相等的多边形中,一个内角是一个外角的4倍,则这个多边形是几边形?这个多边形的内角和是多少度?
17.如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连接DE.
(1)若∠A=50°,∠B=85°,求∠BEC的度数;
(2)若∠A=∠1,求证:∠CDE=∠DCE.
18.探究与发现:
探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.
探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.
探究三:若将△ADC改为任意四边形ABCD呢?
已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.
19.四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.
(1)若点O在四边形ABCD的内部,
①如图1,若AD∥BC,∠B=40°,∠C=70°,则∠DOE= °;
②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.
如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.
20.已知n边形的内角和θ=(n﹣2)×180°.
(1)甲同学说,θ能取720°;而乙同学说,θ也能取820°,甲、乙的说法对吗?若对,求出边数n,若不对,说明理由;
(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.
参考答案与试题解析
一.选择题(共10小题)
1.【解答】解:解法一:设所求正多边形边数为n,
则120°n=(n﹣2) 180°,
解得n=6,∴这个正多边形是正六边形.
解法二:∵正多边形的每个内角都等于120°,
∴正多边形的每个外角都等于180°﹣120°=60°,
又∵多边形的外角和为360°,
∴这个正多边形边数=360°÷60°=6.
故选:A.
2.【解答】解:∵∠1+∠2+∠3+∠4=360°,
∠1+∠2+∠3=240°,
∴∠4=360°﹣(∠1+∠2+∠3)
=360°﹣240°
=120°,
故选:B.
3.【解答】解:正多边形的边数为:360°÷45°=8,即这个多边形是正八边形,
所以该多边形的内角和为(8﹣2)×180°=1080°.
故选:A.
4.【解答】解:∵多边形的外角和是360°,
∴将一个n边形变成(n+2)边形,外角和将不变,
故选:D.
5.【解答】解:∵第一次回到出发点A时,所经过的路线正好构成一个正多边形,
∴多边形的边数为:72÷6=12.
根据多边形的外角和为360°,
∴他每次转过的角度θ=360°÷12=30°.
故选:B.
6.【解答】解:设这个多边形的边数是n,则
(n﹣2) 180°=540°,
解得:n=5.
则这个多边形的边数是5,
故选:C.
7.【解答】解:∵(n﹣2)×180=1800,
∴n=12.
故选:D.
8.【解答】解:根据n边形的内角和公式,得
(n﹣2) 180=360,
解得n=4.
故这个多边形的边数为4.
故选:B.
9.【解答】解:过点D作DF∥AE,交AB于点F,
∵AE∥BC,
∴AE∥DF∥BC,
∴∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,
∴∠C+∠CDE+∠E=360°,
故选:C.
10.【解答】解:如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,
∴∠DAB+∠ABC=150°.
又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,
∴∠PAB+∠ABP=∠DAB+∠ABC+(180°﹣∠ABC)=90°+(∠DAB+∠ABC)=165°,
∴∠P=180°﹣(∠PAB+∠ABP)=15°.
故选:B.
二.填空题(共5小题)
11.【解答】解:设这个多边形是n边形,
根据题意得,(n﹣2) 180°=360°+180°,
解得n=5.
故答案为:5.
12.【解答】解:由题意得:180(n﹣2)=360×3,
解得:n=8,
故答案为:8.
13.【解答】解:如图,∵∠1+∠5=∠7,∠4+∠6=∠8,
又∵∠2+∠3+∠7+∠8=360°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
故答案为:360°.
14.【解答】解:过点D作DF∥AE,交AB于点F,
∵AE∥BC,
∴AE∥DF∥BC,
∴∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,
∴∠C+∠CDE+∠E=360°,
故答案为360°.
15.【解答】解:n边形可以分割出(n﹣1)个三角形.
三.解答题(共5小题)
16.【解答】(1)解:∵∠B+∠ADC=180°,∠A+∠B+∠BCD+∠ADC=360°,
∴∠A+∠BCD=180°,
∵∠A=50°,
∴∠BCD=130°,
∵CE平分∠BCD,
∴∠BCE=∠BCD=65°,
∵∠B=85°,
∴∠BEC=180°﹣∠BCE﹣∠B=180°﹣65°﹣85°=30°;
(2)证明:∵由(1)知:∠A+∠BCD=180°,
∴∠A+∠BCE+∠DCE=180°,
∵∠CDE+∠DCE+∠1=180°,∠1=∠A,
∴∠BCE=∠CDE,
∵CE平分∠BCD,
∴∠DCE=∠BCE,
∴∠CDE=∠DCE.
17.【解答】解:设多边形的边数为n,
180(n﹣2)=360×4,
解得:n=10,
这个多边形的内角和=(10﹣2)×180=1440(度).
答:这个多边形是10边形,这个多边形的内角和是1440度.
18.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,
∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;
探究二:∵DP、CP分别平分∠ADC和∠ACD,
∴∠PDC=∠ADC,∠PCD=∠ACD,
∴∠P=180°﹣∠PDC﹣∠PCD
=180°﹣∠ADC﹣∠ACD
=180°﹣(∠ADC+∠ACD)
=180°﹣(180°﹣∠A)
=90°+∠A;
探究三:∵DP、CP分别平分∠ADC和∠BCD,
∴∠PDC=∠ADC,∠PCD=∠BCD,
∴∠P=180°﹣∠PDC﹣∠PCD
=180°﹣∠ADC﹣∠BCD
=180°﹣(∠ADC+∠BCD)
=180°﹣(360°﹣∠A﹣∠B)
=(∠A+∠B).
19.【解答】解:(1)①∵AD∥BC,∠B=40°,∠C=70°,
∴∠BAD=140°,∠ADC=110°,
∵AE、DO分别平分∠BAD、∠CDA,
∴∠OAD=70°,∠ADO=55°,
∴∠DOE=∠OAD+∠ADO=70°+55°=125°
故答案为:125;
②∠B+∠C+2∠DOE=360°,
理由:∵∠DOE=∠OAD+∠ADO,
∵AE、DO分别平分∠BAD、∠CDA,
∴2∠DOE=∠BAD+∠ADC,
∵∠B+∠C+∠BAD+∠ADC=360°,
∴∠B+∠C+2∠DOE=360°;
(2)∠B+∠C=2∠DOE,
理由:∵∠BAD+∠ADC=360°﹣∠B﹣∠C,∠EAD+∠ADO=180°﹣∠DOE,
∵AE、DO分别平分∠BAD、∠CDA,
∴∠BAD=2∠EAD,∠ADC=2∠ADO,
∴∠BAD+∠ADC=2(∠EAD+∠ADO),
∴360°﹣∠B﹣∠C=2(180°﹣∠DOE),
∴∠B+∠C=2∠DOE.
20.【解答】解:(1)甲对,乙不对.
理由:∵当θ取720°时,720°=(n﹣2)×180°,
解得θ=6;
当θ取820°时,820°=(n﹣2)×180°,
解得θ=;
∵n为整数,
∴θ不能取820°;
(2)依题意得,
(n﹣2)×180°+360°=(n+x﹣2)×180°,
解得x=2.