2022-2023学年度人教版七年级上册数学 2.2 整式的加减 说课稿二

文档属性

名称 2022-2023学年度人教版七年级上册数学 2.2 整式的加减 说课稿二
格式 docx
文件大小 14.3KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-09-14 17:02:45

图片预览

文档简介

2.2 整式的加减说课稿二
各位老师,大家好!今天我说课的题目是人教版七年级(上)第二章第二节《整式的加减》第1课时。
首先,我对本节教材进行一些分析:
一、教材分析: 本节课选自新人教版数学七年级上册§2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
二、教学目标:
1、 知识目标: (1)使学生理解多项式中同类项的概念,会识别同类项。 (2)使学生掌握合并同类项法则。 (3)利用合并同类项法则来化简整式。
2.能力目标: (1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想; 并且能在多项式中准确判断出同类项。 (2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3、情感目标:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
三、教学重点、难点:
重点:同类项的概念、合并同类项的法则及应用。难点:正确判断同类项;准确合并同类项。
四、教学方法与教学手段:
(1)教法分析:
基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。
(2)学法分析: 教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维
教学过程,创建情景问题1:
我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里。为何不把老虎与熊猫关在同一个笼子里呢?
问题2:
(1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗
以具体生活情景为背景,有效的吸引学生的注意力,增强好奇心及求知欲。
观察下面单项式 5a与9a -5m2n与 6m2n -x2y与 8x2y 0与 5 有什么共同点
2.思考:归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)
让学生充分发挥主体作用,从自己的视点去观察、归纳、总结得出同类项的概念。
接着让学生判断下列每组式子分别是同类项吗?为什么?
(1)x与y;(2)a b与ab ;-3pq与3pq; (4)a 与a ;(5)a b与a bc;
使学生牢固掌握同类项的知识,进一步加强对同类项概念的理解。增强应用意识,培养学生的发散思维。
(1) 100t-252t= (2) 3x2+2x2= (3) 3ab2-4ab2=
上述运算有什么共同特点,你能从中得出什么规律?
合并同类项:
把同类项合并成一项就叫做合并同类项
法则: (1)系数:各项系数相加作为新的系数 (2)字母以及字母的指数不变。
合并同类项一般步骤:(1)找同类项 (2合并同类项
例1讲解
(1) 3x-8x-9x (2) 5a2+2ab-4a2-4ab (3) 2x-7y-5x+11y-1
例2: 求多项式2x2-5x+x2+4x-3x2-2的值, 其中x=0.5
分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。
以一道例题的训练为桥梁来得出合并同类项的一般步骤。通过具体的练习让学生初步掌握如何运用合并同类项法则。
在比较两种方法的过程中,体会合并同类项对运算的简化作用
六、教学评价
教师的课堂组织显得尤为重要,教师的主导作用得到较好的发挥。
学生是课堂的主人,学生的主体地位得到较好地保证。
尊重学生在解决问题的过程中所表现出的不同水平。
注重知识的发展过程,渗透数学文化,但不能忽视学生基础知识的学习与基本技能的培养。