1.5.1 乘方
第2课时 有理数的混合运算
教学目标:
1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.
2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.
教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.
教学难点:有理数的混合运算.
教学过程:
一、有理数的混合运算顺序:
1.先乘方,再乘除,最后加减.
2.同级运算,从左到右进行.
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
【例1】计算:
(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);
(2)1-×[3×(-)2-(-1)4]+÷(-)3.
强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.
【例2】观察下面三行数:
-2,4,-8,16,-32,64,…;①
0,6,-6,18,-30,66,…;②
-1,2,-4,8,-16,32,….③
(1)第①行数按什么规律排列
(2)第②③行数与第①行数分别有什么关系
(3)取每行数的第10个数,计算这三个数的和.
【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.
二、课堂练习
1.计算:
(1)|-|2+(-1)101-×(0.5-)÷;
(2)1÷(1)×(-)÷(-12);
(3)(-2)3+3×(-1)2-(-1)4;
(4)[2-(-)3]-(-)+(-)×(-1)2;
(5)5÷[-(2-2)]×6.
2.若|x+2|+(y-3)2=0,求的值.
3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少 若a=-1,则A等于多少
三、课时小结
1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.
2.在运算中要注意像-72与(-7)2等这类式子的区别.