12.2全等三角形的判定(2) 课件(21张ppt)

文档属性

名称 12.2全等三角形的判定(2) 课件(21张ppt)
格式 zip
文件大小 1.5MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-09-14 19:54:06

图片预览

文档简介

(共21张PPT)
12.2全等三角形的判定(2)
人教版八年级上册
教学目标
1、掌握“边角边”条件的内容,能初步应用“边角边”条件判定两个三角形全等.
2、经历探索三角形“边角边”判定定理的过程,在观察中寻求新知,在探索中发展推理能力,逐步掌握说理的基本方法.
3、通过探究三角形全等的条件的活动,培养学生观察分析图形的能力及运算能力,培养学生乐于探索的良好品质以及发现问题的能力.
回顾思考
1.回顾三角形全等的判定方法 1
三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”).
在△ABC和△ DEF中
∴ △ABC ≌△ DEF.(SSS)
AB=DE,
BC=EF,
CA=FD,
2.符号语言表达:
A
B
C
D
E
F
三角形全等的判定——“边角边”定理
探究新知
当两个三角形满足六个条件中的3个时,有四种情况:
三角 ×
三边 √
两边一角 ?
两角一边
【思考】除了SSS外,还有其他情况吗?
能判定全等吗?
新知讲解
已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?
A
B
C
A
B
C
“两边及夹角”
“两边和其中一边的对角”
它们能判定两个三角形全等吗?
新知讲解
尺规作图画出一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A (即使两边和它们的夹角对应相等). 把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?
A
B
C
两边及其夹角能否判定两个三角形全等
做一做
新知讲解
A
B
C
A′
D
E
B′
C′
作法:
(1)画∠DA'E=∠A;
(2)在射线A'D上截取A'B'=AB,在射线A'E上截取A'C'=AC;
(3)连接B'C '.
思考:
① △A′ B′ C′ 与 △ABC 全等吗?如何验证?
②这两个三角形全等是满足哪三个条件?
新知讲解
在△ABC 和△ DEF中,
∴ △ABC ≌△ DEF(SAS).
文字语言:
两边和它们的夹角分别相等的两个三角形全等.
(简写成“边角边”或“SAS ”).
“边角边”判定方法
几何语言:
AB = DE,
∠A =∠D,
AC =AF ,
A
B
C
D
E
F
必须是两边“夹角”
巩固练习
1、下列图形中有没有全等三角形,并说明全等的理由.

8 cm
9 cm

8 cm
9 cm
8 cm
9 cm

30°
30°
30°
图甲与图丙全等,依据就是“SAS”,而图乙中30°的角不是已知两边的夹角,所以不与另外两个三角形全等.
巩固练习
2、下列条件中,能用SAS判定△ABC ≌△DEF的条件是( )
A. AB = DE,∠A =∠D,BC = EF
B. AB = DE,∠B =∠E,BC = EF
C. AB = EF,∠A =∠D,AC = DF
D. BC = EF,∠C =∠F,AB = DF
B
3、已知△ABC中,AB = BC ≠ AC,作与△ABC只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出_____个.
7
例题讲解
例1 如果AB=CB ,∠ ABD= ∠ CBD,那么 △ ABD 和△ CBD 全等吗?
分析:
△ ABD ≌△ CBD.
边:角:边:
AB=CB(已知),
∠ABD= ∠CBD(已知),
A
B
C
D
(SAS)
BD=BD(公共边),
证明:
在△ABD 和△ CBD中,
AB=CB(已知),
∠ABD= ∠CBD(已知),
∴ △ ABD≌△CBD ( SAS).
BD=BD(公共边),
利用“边角边”定理证明三角形全等
素养考点 1
例题讲解
例2 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么
A
C
·
E
D
B
证明:在△ABC 和△DEC 中,
∴△ABC ≌△DEC(SAS).
∴AB =DE .(全等三角形的对应边相等)
AC = DC(已知),
∠ACB =∠DCE (对顶角相等),
CB=EC(已知),
利用全等三角形测距离
素养考点 2
新知讲解
如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?
B
A
C
D
△ABC和△ABD满足
AB=AB ,
AC=AD,
∠B=∠B,
但△ABC与△ABD不全等.
SSA能否判定两个三角形全等?
想一想
新知讲解
画△ABC 和△ABD,使∠A =∠A =30°, AB =AB=5 cm ,BC =BD =3 cm .观察所得的两个三角形是否全等?
A
B
M
C
D
A
B
C
A
B
D
有两边和其中一边的对角分别相等的两个三角形不一定全等.
结论
画一画
例题讲解
例3 下列条件中,不能证明△ABC≌△DEF的是(  )
A.AB=DE,∠B=∠E,BC=EF
B.AB=DE,∠A=∠D,AC=DF
C.BC=EF,∠B=∠E,AC=DF
D.BC=EF,∠C=∠F,AC=DF
解析:要判断能不能使△ABC≌△DEF,应看所给出的条件是不是两边和这两边的夹角,只有选项C的条件不符合,故选C.
C
易错点拨:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.只有两边及夹角对应相等时,才能判定三角形全等.
素养考点 3
三角形全等条件的识别
课堂总结
边角边
内容
有两边及夹角对应相等的两个三角形全等(简写成 “SAS”)
应用
为证明线段和角相等提供了新的证法
注意
1.已知两边,必须找“夹角”
2.已知一角和这角的一夹边,必须找这角的另一夹边
拓展提高
1、如图,AB = AC,若想用“SAS”判定△ABD≌△ACE,则需补充一个条件_________.
AD = AE
拓展提高
2、已知:如图,AB=AC, BD=CD,E为AD上一点.
求证: BE=CE.
证明:
∴ ∠BAD=∠CAD,
在△ABD和△ACD中,
AB=AC
BD=CD
AD=AD
(已知),
(公共边),
(已知),
∴ BE=CE.
在△ABE和△ACE中,
AB=AC
∠BAD=∠CAD
AE=AE
(已知),
(公共边),
(已证),
∴△ABD≌△ACD(SSS).
∴△ABE≌△ACE(SAS).
A
B
C
D
E
拓展提高
3、如图,已知CA=CB , AD=BD, M,N分别是CA,CB的中点,求证:DM=DN.
在△ABD与△CBD中
证明:
CA=CB, (已知)
AD=BD , (已知)
CD=CD ,(公共边)
∴△ACD≌△BCD(SSS)
连接CD,如图所示;
∴∠A=∠B
又∵M,N分别是CA,CB的中点,
∴ AM=BN
在△AMD与△BND中
AM=BN ,(已证)
∠A=∠B ,(已证)
AD=BD ,(已知)
∴△AMD≌△BND.(SAS)
∴DM=DN.
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin