一、单选题
1.投壶是我国古代的一种娱乐活动,比赛投中得分情况分“有初”,“贯耳”,“散射”,“双耳”,“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”.“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为,投中“贯耳”的概率为,投中“散射”的概率为,投中“双耳”的概率为,投中“依竿”的概率为,未投中(0筹)的概率为.乙的投掷水平与甲相同,且甲 乙投掷相互独立.比赛第一场,两人平局;第二场甲投中“有初”,乙投中“双耳”,则三场比赛结束时,甲获胜的概率为( )
A. B. C. D.
2.一个系统如图所示,,,,,,为6个部件,其正常工作的概率都是,且是否正常工作是相互独立的,当,都正常工作或正常工作,或正常工作,或,都正常工作时,系统就能正常工作,则系统正常工作的概率是( )
A. B. C. D.
3.某商场举行购物抽奖活动,抽奖箱中放有编号分别为1,2,3,4,5的五个小球.小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为3,则获得奖金100元;若抽到的小球编号为偶数,则获得奖金50元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回地抽奖两次,则该顾客两次抽奖后获得奖金之和为100元的概率为( )
A. B. C. D.
4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,若双方均不知道对方马的出场顺序,则田忌获胜的概率为( )
A. B.
C. D.
5.七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4 dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从5个三角形中任取出2个,则这2个三角形的面积之和不小于另外3个三角形面积之和的概率是( )
A. B. C. D.
6.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是
A. B. C. D.
7.高三(1)班举行英语演讲比赛,共有六名同学进入决赛,在安排出场顺序时,甲排在后三位,且丙、丁排在一起的概率为( )
A. B. C. D.
8.算盘是中国传统的计算工具,是中国人在长期使用算筹的基础上发明的,是中国古代一项伟大的、重要的发明,在阿拉伯数字出现前是全世界广为使用的计算工具.“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位、……,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)是1,即五粒下珠的大小等于同组一粒上珠的大小.现从个位、十位、百位和千位这四组中随机拨动2粒珠(上珠只能往下拨且每位至多拨1粒上珠,下珠只能往上拨),则算盘表示的整数能够被3整除的概率是( )
A. B. C. D.
二、多选题
9.以下结论中正确的有( )
A.投掷一枚骰子,事件“出现的点数至少是5点”和“出现的点数至多是2点”是互斥事件
B.投掷一枚硬币,事件“结果为正面向上”和“结果为反面向上”是对立事件
C.5个阉中有一个是中签的阉,甲、乙两人同时各抽一个,事件“甲中签”和“乙中签”是对立事件
D.从两男两女四个医生中随机选出两人组建救援队,抽选结果的基本事件是“一男一女”、“两个男医生”、“两个女医生”,共三种
10.以下对各事件发生的概率判断正确的是( )
A.连续抛两枚质地均匀的硬币,有3个基本事件,出现一正一反的概率为
B.每个大于2的偶数都可以表示为两个素数的和,例如12=5+7,在不超过15的素数中随机选取两个不同的数,其和等于14的概率为
C.将一个质地均匀的骰子先后抛掷2次,记下两次向上的点数,则点数之和为6的概率是
D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是
11.下列说法不正确的是( )
A.若A,B为两个事件,则“A与B互斥”是“A与B相互对立”的必要不充分条件
B.若A,B为两个事件,则
C.若事件A,B,C两两互斥,则
D.若事件A,B满足,则A与B相互对立
12.下列说法正确的是( )
A.甲乙两人独立地解题,已知各人能解出的概率分别是0.5,0.25,则题被解出的概率是0.125
B.若,是互斥事件,则,
C.某校200名教师的职称分布情况如下:高级占比20%,中级占比50%,初级占比30%,现从中抽取50名教师做样本,若采用分层抽样方法,则高级教师应抽取10人
D.一位男生和两位女生随机排成一列,则两位女生相邻的概率是
三、填空题
13.住在同一个小区的三位同学在暑假里报名参加小区的志愿者服务,该小区共有四个志愿者服务点,若随机分配,则两位同学刚好分到同一个志愿者服务点的概率是 _______
14.有两枚质地均匀,大小相同的正方体骰子,六个面分别标有数字1,2,3,4,5,6,同时掷两枚骰子,则两枚骰子朝上面的数字之积能被6整除的概率为___________.
15.随着经济发展,江门市居住环境进一步改善,市民休闲活动的公园越来越多,其中,最新打造的网红公园有儿童公园、湖连潮头中央公园、下沙公园.某个节假日,甲、乙、丙、丁四组家庭到这个网红公园打卡,通过访问和意向筛查,最后将这四组家庭的意向汇总如下:
公园 儿童公园 湖连潮头中央公园 下沙公园
有意向的家族组 甲、乙、丙 甲、乙、丁 乙、丙、丁
若每组家庭只能从已登记的选择意向中随机选取一项,且每个公园至多有两组家庭选择,则甲、乙两组家庭选择同一个公园打卡的概率为 ________.
16.某医院某科室有5名医护人员,其中有医生2名,护士3名.现要抽调2人前往新冠肺炎疫情高风险地区进行支援,则抽调的2人中恰好为1名医生和1名护士的概率是______.
四、解答题
17.甲 乙两队举行围棋擂台赛,规则如下:两队各出3人,排定1,2,3号.第一局,双方1号队员出场比赛,负的一方淘汰,该队下一号队员上场比赛.当某队3名队员都被淘汰完,比赛结束,未淘汰完的一方获胜.如图表格中,第m行 第n列的数据是甲队第m号队员能战胜乙队第n号队员的概率.
0.5 0.3 0.2
0.6 0.5 0.3
0.8 0.7 0.6
(1)求甲队2号队员把乙队3名队员都淘汰的概率;
(2)比较第三局比赛,甲队队员和乙队队员哪个获胜的概率更大一些?
18.一个不透明的袋子中装有5个小球,其中有3个红球,2个白球,这些球除颜色外完全相同.
(1)记事件为“一次摸出2个球,摸出的球为一个红球,一个白球”.求;
(2)记事件为“第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,记事件为“第一次摸出一个球,不放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,求证:.
19.科学家在1927年至1929年间发现自然界中的氧含有三种同位素,分别为,,,根据1940年比较精确的质谱测定,自然界中这三种同位素的含量比为占99.759%,占0.037%,占0.204%.现有3个,2个,n个,若从中随机选取1个氧元素,这个氧元素不是的概率为.
(1)求n;
(2)若从中随机选取2个氧元素,求这2个氧元素是同一种同位素的概率.
20.计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,所有考试是否合格相互之间没有影响.
(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?
(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.
21.每年的寒冷天气都会带热“御寒经济”,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:℃)与网上预约出租车订单数(单位:份);
日平均气温(℃) 6 4 2
网上预约订单数 100 135 150 185 210
(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;
(2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.
附:回归直线的斜率和截距的最小二乘法估计分别为:
22.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 A B C D
频数 40 20 20 20
乙分厂产品等级的频数分布表
等级 A B C D
频数 28 17 34 21
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.C
【分析】由题知使三场比赛结束时,甲获胜,第第三局甲、乙获得的筹数可能为:(5,0),(6,0),(10,0),(10,2),(10,4),(10,5),进而根据独立事件的概率求解即可得答案.
【详解】解:根据题意题,要使三场比赛结束时,甲获胜,第第三局甲、乙获得的筹数可能为:(5,0),(6,0),(10,0),(10,2),(10,4),(10,5),
甲、乙对应的投中情况可能为(散射,未投中),(双耳,未投中),(依杆,未投中),(依杆,有初),(依杆,贯耳),(依杆,散射),
所以甲获胜的概率为: .
故选:C
2.A
【分析】并联而成的四个支路,至少有一个支路正常工作系统就正常工作,求出四个支路都不能正常工作的概率,再利用对立事件的概率公式即可得解.
【详解】设“正常工作”为事件,“正常工作”为事件,则
“与中至少有一个不正常工作”为事件,“与中至少有一个不正常工作”为事件,则,
于是得系统不正常工作的事件为,而,,,相互独立,
所以系统正常工作的概率.
故选:A
3.D
【分析】列出两次抽奖的样本空间,从中找出奖金和为100元的样本点,利用古典概率模型和互斥事件概率的计算公式即可求出结果.
【详解】由题意得,该顾客有放回地抽奖两次的样本空间,共25个样本点.
两次抽奖奖金之和为100元包括三种情况:
①第一次奖金为100元,第二次没有中奖,
其包含的情况为,,概率为;
②第一次没中奖,第二次奖金为100元,
其包含的情况为,,概率为;
③两次各获奖金50元,
包含的情况有,,,,概率为.
根据互斥事件的加法公式得该顾客两次抽奖后获得奖金之和为100元的概率为.
故选:D.
4.D
【分析】将齐王与田忌的上、中、下等马编号,列出双方各出上、中、下等马各一匹分组分别进行一场比赛的基本事件即可利用古典概率计算作答.
【详解】齐王的上等马、中等马、下等马分别记为A,B,C,田忌的上等马、中等马、下等马分别记为a,b,c,
双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,依题意,共赛3场,所有基本事件为:
,共6个基本事件,它们等可能,
田忌获胜包含的基本事件为:,仅只1个,
所以田忌获胜的概率.
故选:D
5.D
【分析】先逐个求解所有5个三角形的面积,再根据要求计算概率.
【详解】如图所示,,,,,的面积分别为,,.
将,,,,分别记为,,,,,从这5个三角形中任取出2个,则样本空间,共有10个样本点.
记事件表示“从5个三角形中任取出2个,这2个三角形的面积之和不小于另外3个三角形面积之和”,则事件包含的样本点为,,,共3个,所以.
故选:D.
6.C
【详解】试题分析:由题意可知,事件A与事件B是相互独立的,而事件A、B中至少有一件发生的事件包含、、,又,,所以所事件的概率为,故选C.
考点:相互独立事件概率的计算.
7.B
【分析】利用分类分步计数,结合捆绑法、排列组合数求甲排在后三位且丙、丁排在一起的安排方法数,再由全排列求六位同学任意安排的方法数,应用古典概率的求法求概率即可.
【详解】1、将除甲丙丁外的其它三名同学作排列有种;
2、丙丁捆绑,插入三名同学成排的4个空中,分两种情况:
当插入前2个空有种,再把甲插入五名同学所成排的5个空中后3个空有种;
当插入后2个空有种,再把甲插入有种;
所以,甲排在后三位且丙、丁排在一起的安排方法有种,
而六位同学任意安排的方法数为种,
所以甲排在后三位且丙、丁排在一起的概率为.
故选:B
8.D
【分析】从个位、十位、百位和千位这四组中随机拨动2粒珠,利用列举法列出整数共有32个,其中能够被3整除的整数有16个,进而根据古典概型的概率计算公式可解.
【详解】解:从个位、十位、百位和千位这四组中随机拨动2粒珠,得到的整数共有32个,分别为:
11,15,51,55,101,105,501,505,110,150,510,550,
1001,1005,5001,5005,1010,1050,5010,5050,1100,1500,5100,5500,
2,20,200,2000,6,60,600,6000,
其中算盘表示的整数能够被3整除的整数有16个,分别为:
15,51,105,501,150,510,1005,5001,1050,5010,1500,5100,6,60,600,6000,
则算盘表示的整数能够被3整除的概率为.
故选:.
【点睛】关键点点睛:本题的解题关键点是利用列举法把从个位、十位、百位和千位这四组中随机拨动2粒珠所得到的整数列举出来.
9.AB
【分析】A中事件“至少出现5点”和“至多出现2点”是互斥事件,所以该选项正确;
B中事件“结果正面向上”的发生与“结果反面向上”是对立事件.所以该选项正确;
C中事件“甲中签”和“乙中签”是互斥事件但不是对立事件.所以该选项错误;
D中三种事件不能构成基本事件,所以该选项错误.
【详解】A中事件“至少出现5点”和“至多出现2点”不可能同时发生,所以是互斥事件,所以该选项正确;
B中事件“结果正面向上”的发生与“结果反面向上”的发生不可能同时出现,所以是互斥事件,但所有结果只有两种,所以事件“结果正面向上"和“结果反面向上”是对立事件.所以该选项正确;
C中事件“甲中签”和“乙中签”是不可能同时发生,但也可能是“甲,乙两人都不中签”发生,所以事件“甲中签”和“乙中签”是互斥事件但不是对立事件.所以该选项错误;
D中设两男为,,两女为,,则“”,“”,“”,“”,“”,“”为等可能事件,可以组成一个基本事件空间,显然“一男一女”包含“”,“”,“”,“”四种情况,不能构成基本事件.所以该选项错误.
故选:AB
10.BCD
【分析】A.列举所有的基本事件,得到概率,判断选项;B.首先列举素数,再根据组合数,写出概率;C.列举满足条件的基本事件,求概率;D.根据组合数写出概率,判断选项.
【详解】A.连续抛两枚质地均匀的硬币,有4个基本事件,包含两正,两反,先反再正,先正再反,出现一正一反的概率,故A不正确;
B.不超过15的素数包含2,3,5,7,11,13,共6个数字,随机选取两个不同的数字,和等于14的包含,则概率为,故B正确;
C.将一个质地均匀的骰子先后抛掷2次,共36种情况,点数之和为6包含,共5种,所以点数之和为6的概率,故C正确;
D.由题意可知取出的产品全是正品的概率,故D正确.
【点睛】本题考查古典概型,列举法,组合数,属于基础题型,本题的关键是正确列举所有满足条件的基本事件.
11.BCD
【分析】A. “A与B互斥”是“A与B相互对立”的必要不充分条件,所以该选项正确;
B. ,所以该选项错误;
C. 举反例说明不一定成立,所以该选项错误;
D. 举反例说明A与B不对立,所以该选项错误.
【详解】解:A. 若A,B为两个事件,“A与B互斥”则“A与B不一定相互对立”; “A与B相互对立”则“A与B互斥”,则“A与B互斥”是“A与B相互对立”的必要不充分条件,所以该选项正确;
B. 若A,B为两个事件,则,所以该选项错误;
C. 若事件A,B,C两两互斥,则不一定成立,如:掷骰子一次,记向上的点数为1,向上的点数为2,向上的点数为3,事件A,B,C两两互斥,则.所以该选项错误;
D. 抛掷一枚均匀的骰子,所得的点数为偶数的概率是,掷一枚硬币,正面向上的概率是,满足,但是A与B不对立,所以该选项错误.
故选:BCD
12.BCD
【分析】先求此题不能解出的概率,再利用对立事件可得此题能解出的概率可判断A;由,可判断B;计算出高级教师应抽取的人数可判断C;由列举法得出两位女生相邻的概率可判断D.
【详解】对于A,∵他们各自解出的概率分别是,,则此题不能解出的概率为
,则此题能解出的概率为,故A错;
对于B,若,是互斥事件,则,,故B正确;
对于C,高级教师应抽取人,故C正确;
对于D,由列举法可知,两位女生相邻的概率是,故D正确.
故选:BCD.
13.##0.5625
【分析】先求出三位同学参加小区的志愿者服务共有种方法,再求得三位同学中有两位同学刚好分到同一个志愿者服务点的方法数,再利用古典概型的概率公式求解即可
【详解】由题意得三位同学参加小区的志愿者服务共有种方法,则其中三位同学中有两位同学刚好分到同一个志愿者服务点有种方法,
所以所求概率为,
故答案为:
14.
【分析】根据题意,列举基本事件总数,和满足条件的基本事件数,进而根据古典概型求解即可.
【详解】解:两枚相同的正方体骰子,六个面分别标有数字1,2,3,4,5,6,
同时掷两枚骰子,基本事件有:,,,,,,共有种,
两枚骰子朝上面的数字之积能被6整除包含的基本事件有:
,,共15种,
所以两枚骰子朝上面的数字之积能被6整除的概率为.
故答案为:
15.
【分析】分以下三种情况枚举所有情况即可,①选儿童公园和湖连潮头中央公园,②选儿童公园和下沙公园,③选下沙公园和湖连潮头中央公园,利用古典概型计算公式即可.
【详解】①选儿童公园和湖连潮头中央公园时,有以下情况:甲丙、乙丁;乙丙、甲丁;
②选儿童公园和下沙公园时,有以下情况:甲乙、丙丁;甲丙、乙丁;
③选下沙公园和湖连潮头中央公园时,有以下情况:甲乙、丙丁;甲丁、乙丙;
④选3个公园时,有以下几种情况:甲乙、丁、丙;甲丙、乙、丁;甲丙、丁、乙;乙丙、甲、丁;
丙、甲乙、丁;乙、甲丁、丙;丙、甲丁、乙;乙、甲丁、丙;丙、甲丁、乙;
甲、丁、乙丙;丙、甲、乙丁;甲、乙、丙丁;乙、甲、丙丁;
共有18种选择,其中甲、乙两组家庭选择同一个公园打卡的4种,则甲、乙两组家庭选择同一个公园打卡的概率为.
故答案为:.
16.##
【分析】根据条件列举出所有的情况和满足条件的情况,利用古典概型的概率公式进行求解.
【详解】设2名医生为a,b,3名护士为c,d,e,
则抽调2人的情况有ab,ac,ad,ae,bc,bd,be,cd,ce,de共10种不同结果,
其中恰好为1名医生和1名护士的情况有ac,ad,ae,bc,bd,be共6种不同结果,
则所求概率为.
故答案为:.
17.(1);(2)甲队队员获胜的概率更大一些.
【解析】(1)甲队2号队员把乙队3名队员都淘汰这个事件的发生应是甲队1号输给乙队1号,然后甲队2号上场,三场全胜,由独立事件概率公式计算可得;
(2)第三局比赛甲胜可分为3个互斥事件:甲队1号胜乙队3号,甲队2号胜乙队2号,甲队3号胜乙队1号,分别计算概率后相加可得.然后由对立事件概率得出乙队胜的概率,比较后要得结论.
【详解】解:(1)甲队2号队员把乙队3名队员都淘汰的概率为
(2)第3局比赛甲队队员获胜可分为3个互斥事件
(i)甲队1号胜乙队3号,概率为;
(ii)甲队2号胜乙队2号,概率为;
(iii)甲队3号胜乙队1号,概率为
故第3局甲队队员胜的概率为.
则第3局乙队队员胜的概率为
因为,
故甲队队员获胜的概率更大一些.
【点睛】关键点点睛:本题考查相互独立事件的概率公式和互斥事件的概率公式.解题关键是把事件“第3局比赛甲队队员获胜”分斥成3个互斥事件,然后分别求得概率后易得出结论.
18.(1);(2)证明见解析.
【解析】(1)列举出从袋中一次摸出2个球的所有基本事件,找出其中满足事件的基本事件有6个,即可求解;
(2)同样列举出从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件的基本事件;同理列举出从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件的基本事件,即可计算出.
【详解】解:(1)记这3个红球为,2个白球记为,则从袋中一次摸出2个球的所有基本事件为:,,,,,,,,,共10个,其中满足事件的基本事件有6个,所以.
(2)从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件为,,,,,,,,,,,,,,,,,,,,,,,,共25个,满足事件的基本事件有12个,所以.
从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件为,,,,,,,,,,,,,,,,,,,共20个,满足事件的基本事件有12个,所以.
因此:,
又,所以.
【点晴】方法点晴:等可能事件概率一般用列举法列举出所有基本事件,找出满足所求事件的基本事件个数,直接用公式求得概率.
19.(1)1;
(2).
【分析】(1)求出随机选取1个氧元素是的概率,再利用对立事件概率公式计算作答.
(2)对给定的,,进行编号,列举出选取2个氧元素的所有结果,再借助古典概率公式计算作答.
(1)依题意,从这些氧元素中随机选取1个,这个氧元素是的概率,则有,解得n=1,所以n=1.
(2)记3个分别为a,b,c,2个分别为x,y,1个为m,从中随机选取2个,所有的情况为:,,,,,,,,,,,,,,,共15种,它们等可能,其中这2个氧元素是同一种同位素的情况有,,,,共4种,其概率为,所以这2个氧元素是同一种同位素的概率是.
20.(1)丙;(2)
【解析】(1)分别计算三者获得合格证书的概率,比较大小即可(2)根据互斥事件的和,列出三人考试后恰有两人获得合格证书事件,由概率公式计算即可求解.
【详解】(1)设“甲获得合格证书”为事件A,“乙获得合格证书”为事件B,“丙获得合格证书”为事件C,则,,.
因为,所以丙获得合格证书的可能性最大.
(2)设“三人考试后恰有两人获得合格证书”为事件D,则.
【点睛】本题主要考查了相互独立事件,互斥事件,及其概率公式的应用,属于中档题.
21.(1),232;(2)
【解析】(1) 根据公式代入求解;
(2) 先列出基本事件空间,再列出要求的事件,最后求概率即可.
【详解】解:(1)由表格可求出代入公式求出,
所以,所以
当时,.
所以可预测日平均气温为时该出租车公司的网约订单数约为232份.
(2)记这5天中气温不高于的三天分别为,另外两天分别记为,则在这5天中任意选取2天有,共10个基本事件,其中恰有1天网约订单数不低于210份的有,共6个基本事件,
所以所求概率,即恰有1天网约订单数不低于20份的概率为.
【点睛】考查线性回归系数的求法以及古典概型求概率的方法,中档题.
22.(1)甲分厂加工出来的级品的概率为,乙分厂加工出来的级品的概率为;(2)选甲分厂,理由见解析.
【分析】(1)根据两个频数分布表即可求出;
(2)根据题意分别求出甲乙两厂加工件产品的总利润,即可求出平均利润,由此作出选择.
【详解】(1)由表可知,甲厂加工出来的一件产品为级品的概率为,乙厂加工出来的一件产品为级品的概率为;
(2)甲分厂加工件产品的总利润为元,
所以甲分厂加工件产品的平均利润为元每件;
乙分厂加工件产品的总利润为
元,
所以乙分厂加工件产品的平均利润为元每件.
故厂家选择甲分厂承接加工任务.
【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属于基础题.
答案第1页,共2页
答案第1页,共2页