一、单选题
1.某地一重点高中为让学生提高遵守交通的意识,每天都派出多名学生参加与交通相关的各类活动.现有包括甲、乙两人在内的6名中学生,自愿参加交通志愿者的服务工作这6名中学生中2人被分配到学校附近路口执勤,2人被分配到医院附近路口执勤,2人被分配到中心市场附近路口执勤,如果分配去向是随机的,则甲、乙两人被分配到同一路口的概率是( )
A. B. C. D.
2.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列,如果为数列的前项和,那么 且的概率为
A. B. C. D.
3.在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:①每人可发球7次,每成功一次记1分;②若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是( )
A. B. C. D.
4.青春因奉献而美丽,为了响应党的十九大关于“推动城乡义务教育一体化发展,高度重视农村义务教育”精神,现有5名师范大学毕业生主动要求赴西部某地区甲、乙、丙三个不同的学校去支教,每个学校至少去1人,则恰好有2名大学生分配去甲学校的概率为
A. B. C. D.
5.一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率为,且是相互独立的,则灯亮的概率是( )
A. B. C. D.
6.已知,,为中不同数字的种类,如,求所有的个的排列所得的的平均值为
A. B. C. D.
7.将编号分别为1,2,3,4,5的5个小球分别放入3个不同的盒子中,每个盒子都不空,则每个盒子中所放小球的编号奇偶性均不相同的概率为
A. B. C. D.
8.新冠疫情期间,网上购物成为主流.因保管不善,五个快递ABCDE上送货地址模糊不清,但快递小哥记得这五个快递应分别送去甲乙丙丁戊五个地方,全部送错的概率是( )
A. B. C. D.
二、填空题
9.有下列说法
①互斥事件不一定是对立事件,对立事件一定是互斥事件
②演绎推理是从特殊到一般的推理,它的一般模式是“三段论”
③残差图的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高
④若,则事件与互斥且对立
⑤甲乙两艘轮船都要在某个泊位停靠4小时,假定它们在一昼夜的时间段中随机到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为.
其中正确的说法是______(写出全部正确说法的序号).
10.乒乓球比赛,三局二胜制.任一局甲胜的概率是,甲赢得比赛的概率是,则的最大值为_____.
11.某人有两盒火柴,每盒都有根火柴,每次用火柴时他在两盒中任取一盒并从中抽出一根,求他发现用完一盒时另一盒还有根()的概率_____.
12.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).
①;
②;
③事件与事件相互独立;
④是两两互斥的事件;
⑤的值不能确定,因为它与中哪一个发生有关
三、解答题
13.某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:
方案一:逐瓶检验,则需检验次;
方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.
(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;
(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.
若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.
(i)若与的期望相等.试求关于的函数解析式;
(ii)若,且采用方案二总次数的期望小于采用方案一总次数的期望.求的最大值.
参考数据:
14.袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.
(1)求取球2次即终止的概率;
(2)求甲取到白球的概率.
15.设是给定的正整数(),现有个外表相同的袋子,里面均装有个除颜色外其他无区别的小球,第个袋中有个红球,个白球.现将这些袋子混合后,任选其中一个袋子,并且从中连续取出三个球(每个取后不放回).
(1)若,假设已知选中的恰为第2个袋子,求第三次取出为白球的概率;
(2)若,求第三次取出为白球的概率;
(3)对于任意的正整数,求第三次取出为白球的概率.
16.某学校组织校园安全知识竞赛.在初赛中有两轮答题,第一轮从A类的5个问题中任选两题作答,若两题都答对,则得40分,否则得0分;第二轮从B类的5个问题中任选两题作答,每答对1题得30分,答错得0分若两轮总积分不低于60分则晋级复赛.
小芳和小明同时参赛,已知小芳每个问题答对的概率都为0.5.在A类的5个问题中,小明只能答对4个问题;在B类的5个问题中,小明每个问题答对的概率都为0.4.他们回答任一问题正确与否互不影响.
(1)求小明在第一轮得40分的概率;
(2)以晋级复赛的概率大小为依据,小芳和小明谁更容易晋级复赛?
17.某高速公路全程设有2n(n≥4,)个服务区.为加强驾驶人员的安全意识,现规划在每个服务区的入口处设置醒目的宣传标语A或宣传标语B.
(1)若每个服务区入口处设置宣传标语A的概率为,入口处设置宣传标语B的服务区有X个,求X的数学期望;
(2)试探究全程两种宣传标语的设置比例,使得长途司机在走该高速全程中,随机选取3个服务区休息,看到相同宣传标语的概率最小,并求出其最小值.
18.有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的(即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出条鱼,检验鱼体中的汞含量与其体重的比值(单位:),数据统计如下:
(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的分位数;
(2)有,两个水池,两水池之间有个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过条鱼.
(ⅰ)将其中汞的含量最低的条鱼分别放入水池和水池中,若这条鱼的游动相互独立,均有的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;
(ⅱ)将其中汞的含量最低的条鱼都先放入水池中,若这条鱼均会独立地且等可能地从其中任意一个小孔由水池进入水池且不再游回水池,求这两条鱼由不同小孔进入水池的概率.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.A
【分析】结合排列、组合求得把6名同学平均分配到三个不同的路口分配种数,再求得甲、乙两人被分配到同一路口种数,利用古典概型及其概率的计算公式,即可求解.
【详解】由题意,把6名同学平均分配到三个不同的路口,共有种分配方案,
其中甲、乙两人被分配到同一路口有种可能,
所以甲、乙两人被分配到同一路口的概率为.
故选:A.
【点睛】本题主要考查了古典概型及其概率的计算,以及排列组合的应用,着重考查分析问题和解答问题的能力,属于中档试题.
2.A
【分析】说明共摸球七次,只有两次摸到红球,由于每次摸球的结果数之间没有影响,故可以用独立事件的概率乘法公式求解,再求出前两次为,后五次均为1的概率,即可得出结论.
【详解】由题意说明共摸球七次,只有两次摸到红球,5次白的,
每次取得红球的概率为,取得白球的概率为,则;
又,所以,前两次不能为,
前两次为,后五次均为1的概率为:,
所以所求概率为:.
故选A.
【点睛】本题考查独立事件的概率乘法公式,考查学生分析解决问题的能力,确定说明共摸球七次,只有两次摸到红球是关键.
3.B
【分析】明确恰好得5分的所有情况:发球四次得分,有两个连续得分和发球四次得分,有三个连续得分,分别求解可得.
【详解】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率,所求概率;故选B.
【点睛】本题主要考查相互独立事件的概率,题目稍有难度,侧重考查数学建模和数学运算的核心素养.
4.A
【解析】计算所有情况共有种,满足条件的共有种,得到答案.
【详解】所有情况共有种.
满足条件的共有种,故.
故选:.
【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.
5.B
【详解】设与中至少有一个不闭合的事件为与至少有一个不闭合的事件为,则,所以灯亮的概率为 , 故选B.
【方法点睛】本题主要考查独立事件、对立事件的概率公式,属于难题.解答这类综合性的概率问题一定要把事件的独立性、互斥性与对立性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.
6.D
【分析】本题首先可以确定的所有可能取值分别为,然后分别计算出每一种取值所对应的概率,最后根据每一种取值所对应的概率即可计算出的平均值.
【详解】由题意可知:
当时,;
当时,;
当时,;
当时,,
综上所述,所有的个的排列所得的的平均值为:
,故选D.
【点睛】本题考查了平均值的计算,能否通过题意得出的所有可能情况并计算出每一种可能情况所对应的概率是解决本题的关键,考查推理能力与计算能力,是难题.
7.C
【分析】先判断奇偶性不同则只能是2,2,1,再计算概率
【详解】由题知,要求每个盒子都不空,则3个盒子中放入小球的个数可分别为3,1,1或2,2,1,
若要求每个盒子中小球编号的奇偶性不同则只能是2,2,1,
且放入同一盒子中的两个小球必须是编号为一奇一偶,
故所求概率为
故答案选C
【点睛】本题考查了概率的计算,判断奇偶性不同则只能是2,2,1是解题的关键,意在考查学生的计算能力.
8.C
【分析】5个快递送到5个地方有种方法,
全送错的方法:第一步A送错有4种可能,然后第二步是关键,考虑A送错的地方对应的快递,如送到丙地,第二步考虑快递,而送错位置分两类,一类是送到甲,一类是送其他三个地方,再对剩下的3个快递分别考虑即可完成.
【详解】5个快递送到5个地方有种方法,
全送错的方法数:
先分步:第一步快递送错有4种方法,第二步考虑所送位置对应的快递,假设送到丙地,第二步考虑快递,对分类,第一类送到甲地,则剩下要均送错有2种可能(丁戊乙,戊乙丁),第二类送到乙丁戊中的一个地方,有3种可能,如送到丁地,剩下的只有甲乙戊三地可送,全送错有3种可能(甲戊乙,戊甲乙,戊乙甲),∴总的方法数为,所求概率为.
故选:C.
【点睛】本题考查古典概型,快递送错位置与信装错信封(信封上已写地址)是同一回事,属于典型的计数问题,注意其求解方法,分类还是分步要确定好.
9.①③⑤
【分析】由事件的互斥和对立的概念可判断①;由演绎推理的定义可判断②;由残差图的形状可判断③;考虑几何概型事件的概率可判断④;设出甲、乙到达的时刻,列出所有基本事件的约束条件同时列出这两艘船中至少有一艘在停靠泊位时必须等待约束条件,利用线性规划作出平面区域,利用几何概型概率公式求出概率,可判断⑤.
【详解】对于①,互斥事件不一定是对立事件,但对立事件一定是互斥事件,故①正确;
对于②,演绎推理是从一般到特殊的推理,它的一般模式是“三段论”,故②错误;
对于③,残差图的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高,故③正确;
对于④,若P(A∪B)=P(A)+P(B)=1,则事件A与B不一定互斥且对立,
例如几何概型:在[-1,1]任取实数,则事件A;事件B:则有P(A∪B)=P(A)+P(B)=1,但事件A与B不互斥,故④错误;
对于⑤,设甲到达的时刻为x,乙到达的时刻为y则所有的基本事件构成的
区域Ω满足,
这两艘船中至少有一艘在停靠泊位时必须等待包含的基本事件构成的区域A满足,作出对应的平面区域如图,
这两艘船中至少有一艘在停靠泊位时必须等待的概率
,故⑤正确.
故答案为①③⑤.
【点睛】本题考查命题的真假判断,主要是事件的互斥和对立,以及几何概率的求法,考查判断能力和推理能力,属于中档题.
10.
【详解】分析:采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率;进而求得的最大值.
详解:采用三局两胜制,
则甲在下列两种情况下获胜: (甲净胜二局), (前二局甲一胜一负,第三局甲胜).
因为 与 互斥,所以甲胜概率为 则 设
即答案为.,注意到,则函数在和 单调递减,在上单调递增,故函数在处取得极大值,也是最大值,最大值为
即答案为.
点睛:本题考查概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用.
11.
【分析】根据题意,记两个火柴盒分别为A,B,一共抽了根,不妨令这么多次抽取动作中,有次都是操作在A盒上,次操作在B盒上,则最后一次一定操作在A盒,所有的抽法共有种,用完一盒时另一盒还有根的抽法有种,由古典概型的概率公式,即可求出概率.
【详解】解:根据题意,记两个火柴盒分别为A,B,一共抽了根,
不妨令这么多次抽取动作中,有次都是操作在A盒上,次操作在B盒上,
则最后一次一定操作在A盒,
因此所有的抽法共有种,
用完一盒时另一盒还有根的抽法有种,
由古典概型的概率公式得,
他发现用完一盒时另一盒还有根()的概率为.
故答案为:.
【点睛】本题主要考查古典概型的概率问题,熟记概率的计算公式即可,属于常考题型.
12.②④
【分析】根据互斥事件的定义即可判断④;根据条件概率的计算公式分别得出事件发生的条件下B事件发生的概率,即可判断②;然后由,判断①和⑤;再比较的大小即可判断③.
【详解】由题意可知事件不可能同时发生,则是两两互斥的事件,则④正确;
由题意得,故②正确;
,①⑤错;
因为,所以事件B与事件A1不独立,③错;综上选②④
故答案为:②④
【点睛】本题主要考查了判断互斥事件,计算条件概率以及事件的独立性,属于中档题.
13.(1)(2)(ⅰ)(ii)8
【分析】(1)对可能的情况分类:<1>前两次检验出一瓶含有细菌第三次也检验出一瓶含有细菌,<2>前三次都没有检验出来,最后就剩下两瓶含有细菌;(2)(i)根据,找到与的函数关系;(ii)根据得到关于的不等式式,构造函数解决问题.
【详解】解:(1)记所求事件为,“第三次含有细菌且前2次中有一次含有细菌”为事件,“前三次均不含有细菌”为事件,
则,且互斥,
所以
(2),
的取值为,
,
所以,
由得,
所以;
(ii),所以,
所以,所以
设,
,
当时,在上单调递增;
当时,在上单调递减
又,
所以的最大值为8
【点睛】本题考查离散型随机变量的均值以及随机事件的概率计算,难度较难.计算两个事件的和事件的概率,如果两个事件互斥,可将结果写成两个事件的概率之和;均值(或期望)的相关计算公式要熟记..
14.(1);(2)
【解析】(1)第二次终止即:第一次摸到黑球第二次摸到白球;
(2)根据规则,甲取到白球必须可能是第1,3,5次出现白球,且在摸到白球之前乙摸到黑球,结合树状图求解.
【详解】(1)设事件A为“取球2次即终止”.即甲第一次取到的是黑球而乙取到的是白球,借助树状图求出相应事件的样本点数:
因此,.
(2)设事件B为“甲取到白球”,“第i次取到白球”为事件,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.借助树状图求出相应事件的样本点数:
所以
.
【点睛】此题考查互斥事件的加法法则,关键在于准确将一个事件分拆成多个互斥的事件分别计算概率.
15.(1);(2);(3).
【分析】(1)时,第三次取出为白球的情况有:红红白,红白白,白红白,利用相互独立事件概率乘法公式,互斥事件概率加法公式能求出第三次取出为白球的概率.
(2)先求出第三次取出的是白球的种数,再求出在第个袋子中第三次取出的是白球的概率,选到第个袋子的概率为,由此能求出第三次取出的是白球的概率.
(3)先求出第三次取出的是白球的种数,再求出在第个袋子中第三次取出的是白球的概率,选到第个袋子的概率为,由此能求出第三次取出的是白球的概率.
【详解】解:(1)时,第二个袋中有2白2红,共4个球,从中连续取出三个球(每个取后不放回).
第三次取出为白球的情况有:红红白,红白白,白红白,
∴第三次取出为白球的概率.
(2)设选出的是第个袋,连续三次取球的方法数为,
第三次取出的是白球的三次取球颜色有如下四种情形:
(白,白,白),取法数为,
(白,红,白),取法数为,
(红,白,白),取法数为,
(红,红,白),取法数为,
从而第三次取出的是白球的种数为:
,
则在第个袋子中第三次取出的是白球的概率,
而选到第个袋子的概率为,故所求概率为:
.
(3)设选出的是第个袋,连续三次取球的方法数为,
第三次取出的是白球的三次取球颜色有如下四种情形:
(白,白,白),取法数为,
(白,红,白),取法数为,
(红,白,白),取法数为,
(红,红,白),取法数为,
从而第三次取出的是白球的种数为:
,
则在第个袋子中第三次取出的是白球的概率,
而选到第个袋子的概率为,故所求概率为:
.
【点睛】关键点睛:本题考查概率的求法,相互独立事件概率乘法公式,互斥事件概率加法公式,关键在于运用列举法,准确地运用公式得以解决问题.
16.(1);
(2)小明更容易晋级复赛.
【分析】(1)对A类的5个问题进行编号:,设小明只能答对4个问题的编号为:,列出所有的样本空间,即可求出小明在第一类得40分的概率;
(2)依题意能够晋级复赛,则第一轮答对两题得分,第二轮答对一题得分;或第一轮答对两题得分,第二轮答对两题得分;或第一轮答错两题得分,第二轮答对两题得分;或第一轮答对一题得分,第二轮答对两题得分;分别求出小芳和小明晋级复赛的概率,进行比较得出结论.
(1)
对A类的5个问题进行编号:,第一轮从A类的5个问题中任选两题作答,
则有共种,
设小明只能答对4个问题的编号为:,
则小明在第一轮得40分,有共种,
则小明在第一轮得40分的概率为:;
(2)
由(1)知,小明在第一轮得40分的概率为,
则小明在第一轮得0分的概率为:,
依题意,两人能够晋级复赛,即两轮总积分不低于60分
当第一轮答对两题得分,第二轮答对一题得分时,
小芳和小明晋级复赛的概率分别为:
;
;
当第一轮答对两题得分,第二轮答对两题得分时,
小芳和小明晋级复赛的概率分别为:
;;
当第一轮答错一题得分,第二轮答对两题得分时,
小芳和小明晋级复赛的概率分别为:
;;
当第一轮答错两题得分,第二轮答对两题得分时,
小芳晋级复赛的概率分别为:
;
小芳晋级复赛的概率为:;
小明晋级复赛的概率为:;
,
小明更容易晋级复赛.
17.(1)(2)两种宣传标语1:1设置时,符合题设的概率最小,其最小值为
【解析】(1)由题意得每个服务区入口处设置宣传标语B的概率为,则X~B(2n,),由此可求出答案;
(2)由古典概型的概率计算公式可得,记这3个服务区看到相同的宣传标语的事件数为M,看到相同宣传标语的概率P=, 设该高速公路全程2n个服务区中,入口处设置醒目的宣传标语A的有m(m,m≤2n)个,分类讨论,利用数列中邻项作差法(即根据相邻两项之差的符号判断其单调性)结合组合数的性质可求得的最小值,从而求出答案.
【详解】解:(1)∵每个服务区入口处设置宣传标语A的概率为,
∴每个服务区入口处设置宣传标语B的概率为,
∴X~B(2n,),∴;
(2)长途司机在走该高速全程中,随机的选取3个服务区,共有种选取方法,
长途司机在走该高速全程中,随机的选取3个服务区,
记这3个服务区看到相同的宣传标语的事件数为M,
则其概率P=,
设该高速公路全程2n个服务区中,入口处设置醒目的宣传标语A的有m(m,m≤2n)个,
①当时,,
令,,
则当时,,
∴当时,;当时,,
∴当时,,即;
②当,时,,显然,
∴,
∵,∴,
∴,
即,
当,时,,
∵,时,,或,或,
∴同②,;
综上,当时,,,
即两种宣传标语1:1设置时,符合题设的概率最小,其最小值为.
【点睛】本题主要考查二项分布的应用,考查古典概型的概率计算公式,考查组合数公式的应用,考查数列的单调性,考查分类讨论思想,考查计算能力与推理能力,属于难题.
18.(1)中位数为;众数为;极差为;估计这批鱼该项数据的百分位数约为;(2)(ⅰ);(ⅱ).
【分析】(1)由中位数—排序后处于中间的数,如有两个数取其平均数;众数—出现频率最高的数、极差—最大数与最小数的差;百分比位数—数据集中有n个数:当np为整数时,当np不为整数时;即可求出对应值;(2) (ⅰ)记:“两鱼最终均在水池”; :“两鱼最终均在水池”求出概率,由它们的互斥性即可求得两条鱼最终在同一水池的概率;(ⅱ)记:“两鱼同时从第n个小孔通过”且鱼的游动独立,知,而10个事件互斥,则“两鱼同时从一个小孔通过”的概率即可求,它与“两条鱼由不同小孔通过”为互斥事件,进而求得其概率
【详解】解:(1)由题意知,数据的中位数为
数据的众数为
数据的极差为
估计这批鱼该项数据的百分位数约为
(2)(ⅰ)记“两鱼最终均在水池”为事件,则
记“两鱼最终均在水池”为事件,则
∵事件与事件互斥,
∴两条鱼最终在同一水池的概率为
(ⅱ)记“两鱼同时从第一个小孔通过”为事件,“两鱼同时从第二个小孔通过”为
事件,依次类推;而两鱼的游动独立
∴
记“两条鱼由不同小孔进入水池”为事件,则与对立,又由事件,事件,互斥
∴
即
【点睛】本题考查了数据特征值的概念,以及利用条件概率公式,结合互斥事件、独立事件等概念求概率;注意独立事件:多个事件的发生互不相关,且可以同时发生;互斥事件:一个事件发生则另一个事件必不发生,即不能同时发生
答案第1页,共2页
答案第1页,共2页