2022-2023学年北师大版九年级数学上册《1.2矩形的性质与判定》达标测试题(附答案)
一.选择题(共8小题,满分40分)
1.矩形具有而平行四边形不一定具有的性质是( )
A.对边相等 B.对角相等
C.对角线相等 D.对角线互相平分
2.如图,矩形ABCD中,对角线AC,BD交于点O,∠AOB=120°,AD=2,则矩形ABCD的面积是( )
A.2 B.2 C.4 D.8
3.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是( )
A.1 B. C.2 D.
4.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE=10,则AB的长为( )
A.4.2 B.4.5 C.5.2 D.5.5
5.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是( )
A.AD=BC且AC=BD B.AD=BC且∠A=∠B
C.AB=CD且∠A=∠C D.AB∥CD且AC=BD
6.如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30°,∠BEC=90°,EF=4cm,则矩形的面积为( )
A.16cm2 B.8cm2 C.16cm2 D.32cm2
7.如图,点M是矩形ABCD的对角线AC上一点,过点M作EF∥AB,分别交AD,BC于点E,F,连接MD,MB.若DE=2,EM=5,则阴影部分的面积为( )
A.5 B.10 C.12 D.14
8.如图,点E为矩形ABCD的边BC上的点,作DF⊥AE于点F,且满足DF=AB.下面结论:①DE平分∠AEC;②△ADE为等腰三角形;③AF=AB;
④AE=BE+EF.其中正确的结论有多少个( )
A.1个 B.2个 C.3个 D.4个
二.填空题(共8小题,满分40分)
9.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为 .
10.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E= 度.
11.如图,四边形ABDE是长方形,AC⊥DC于点C,交BD于点F,AE=AC,∠ADE=62°,则∠BAF的度数为 .
12.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若AC=4,∠BAC=30°,那么AE= .
13.矩形ABCD与矩形CEFG如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH.若BC=EF=3,CD=CE=1,则GH= .
14.如图,在矩形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,若AB=4,BC=6,则GH的长度为 .
15.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为 .
16.如图,在矩形ABCD中,AB=3,AD=6,E是AD上一点,AE=1,P是BC上一动点,连接AP,取AP的中点F,连接EF,当线段EF取得最小值时,线段PD的长度是 .
三.解答题(共5小题,满分40分)
17.如图,在平行四边形ABCD中,CE⊥AD于点E,延长DA至点F,使得EF=DA,连接BF,CF.
(1)求证:四边形BCEF是矩形;
(2)若AB=3,CF=4,DF=5,求EF的长.
18.如图,已知平行四边形ABCD中,M,N是BD上两点,且BM=DN,AC=2OM.
(1)求证:四边形AMCN是矩形;
(2)若∠BAD=135°,CD=2,AB⊥AC,求对角线MN的长.
19.如图,△ABC中,AB=AC,AD是BC边上的高,点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.
(1)求证:四边形ADCE是矩形;
(2)若OE=2,求AB的长.
20.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若AB=1,求△OEC的面积.
21.已知:如图,四边形ABCD的对角线AC、BD相交于点O,AO=BO=CO,∠BAC=∠ACD.
(1)求证:四边形ABCD是矩形;
(2)如果点E在边AB上,DE平分∠ADB,BDAB,求证:BD=AD+AE.
参考答案
一.选择题(共8小题,满分40分)
1.解:矩形的对角线相等,而平行四边形的对角线不一定相等.
故选:C.
2.解:∵四边形ABCD是矩形,
∴AC=BD,AO=BO=OD,
∵∠AOB=120°,
∴∠OAB=∠OBA=30°,
∴BD=2AD=4,
∴AB2,
∴矩形ABCD的面积=AB×AD=4,
故选:C.
3.解:连接CE,如图所示:
∵四边形ABCD是矩形,
∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,
∵EF⊥AC,
∴AE=CE,
设DE=x,则CE=AE=8﹣x,
在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,
解得:x,
即DE;
故选:B.
4.解:如图,∵四边形ABCD是矩形,
∴CD∥AB,
∴∠1=∠E.
又∵∠BDC的平分线交AB的延长线于点E,
∴∠1=∠2,
∴∠2=∠E.
∴BE=BD.
∵AE=10,
∴BD=BE=10﹣AB.
在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB.
∴AB=4.2.
故选:A.
5.解:A.∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,
∵AC=BD,
∴平行四边形ABCD是矩形,故选项A不符合题意;
B.∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,
∴∠A+∠B=180°,
∵∠A=∠B,
∴∠A=∠B=90°,
∴平行四边形ABCD是矩形,故选项B不符合题意;
C.∵AD∥BC,
∴∠A+∠B=∠C+∠D=180°,
∵∠A=∠C,
∴∠B=∠D,
∴四边形ABCD是平行四边形,
∴AB=CD,
∴不能判定四边形ABCD为矩形,故选项C符合题意;
D、∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∵AC=BD,
∴四边形ABCD是矩形,故选项D不符合题意;
故选:C.
6.解:∵F是BC中点,∠BEC=90°,
∴EF=BF=FC,BC=2EF=2×4=8cm,
∵∠ECD=30°,
∴∠BCE=90°﹣∠EBC=90°﹣30°=60°,
∴△CEF是等边三角形,
过点E作EG⊥CF于G,
则EGEF4=2cm,
∴矩形的面积=8×216cm2.
故选:C.
7.解:作PM⊥AB于P,交DC于Q.
则有四边形DEMQ,四边形QMFC,四边形AEMP,四边形MPBF都是矩形,
∴S△DEM=S△DQM,S△QCM=S△MFC,S△AEM=S△APM,S△MPB=S△MFB,S△ABC=S△ADC,
∴S△ABC﹣S△AMP﹣S△MCF=S△ADC﹣S△AEM﹣S△MQC,
∴S四边形DEMQ=S四边形MPBF,
∵DE=CF=2,
∴S△DEM=S△MFB2×5=5,
∴S阴=5+5=10,
故选:B.
8.解:∵四边形ABCD是矩形,
∴∠C=∠ABE=90°,AD∥BC,AB=CD,
∵DF=AB,
∴DF=CD,
∵DF⊥AE,
∴∠DFA=∠DFE=90°,
在Rt△DEF和Rt△DEC中,,
∴Rt△DEF≌Rt△DEC(HL),
∴∠FED=∠CED,
∴DE平分∠AEC;
故①正确;
∵AD∥BC,
∴∠AEB=∠DAF,
在△ABE和△DFA中,
,
∴△ABE≌△DFA(AAS),
∴AE=AD,
∴△ADE为等腰三角形;
故②正确;
∵△ABE≌△DFA,
∴不存在AF=AB,
故③错误;
∵△ABE≌△DFA,
∴BE=FA,
∴AE=AF+EF=BE+EF.
故④正确.
故正确的结论有①②④,三个.
故选:C.
二.填空题(共8小题,满分40分)
9.解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD3;
故答案为:3.
10.解:连接AC,
∵四边形ABCD是矩形,
∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=30°,即∠E=15°,
故答案为:15.
11.解:∵四边形ABDE是矩形,
∴∠BAE=∠E=90°,
∵∠ADE=62°,
∴∠EAD=28°,
∵AC⊥CD,
∴∠C=∠E=90°
∵AE=AC,AD=AD,
∴Rt△ACD≌Rt△AED(HL)
∴∠EAD=∠CAD=28°,
∴∠BAF=90°﹣28°﹣28°=34°,
故答案为:34°.
12.解:∵四边形ABCD是矩形,
∴AO=CO=2,
∵∠BAC=30°,OE⊥AC,
∴AE=2OE,
∵AE2﹣OE2=AO2=4,
∴OE,
∴AE=2OE,
故答案为:.
13.解:延长GH交AD于M点,如图所示:
∵四边形ABCD与四边形CEFG都是矩形,
∴CD=CE=FG=1,BC=EF=CG=3,BE∥AD∥FG,
∴DG=CG﹣CD=3﹣1=2,∠HAM=∠HFG,
∵AF的中点H,
∴AH=FH,
在△AMH和△FGH中,
,
∴△AMH≌△FGH(ASA).
∴AM=FG=1,MH=GH,
∴MD=AD﹣AM=3﹣1=2,
在Rt△MDG中,GM2,
∴GHGM,
故答案为:.
14.解:连接CH并延长交AD于P,连接PE,
∵四边形ABCD是矩形,
∴∠A=90°,AD∥BC,
∵E,F分别是边AB,BC的中点,AB=4,BC=6,
∴AEAB4=2,CFBC6=3,
∵AD∥BC,
∴∠DPH=∠FCH,
在△PDH与△CFH中,
,
∴△PDH≌△CFH(AAS),
∴PD=CF=3,CH=PH,
∴AP=AD﹣PD=3,
∴PE,
∵点G是EC的中点,
∴GHEP
故答案为:.
15.解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,
∴OMCDAB=2.5,
∵AB=5,AD=12,
∴AC13,
∵O是矩形ABCD的对角线AC的中点,
∴BOAC=6.5,
∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,
故答案为:20.
16.解:过点P作PM∥FE交AD于M,如图,
∵F为AP的中点,PM∥FE,
∴FE为△APM的中位线,
∴AM=2AE=2,PM=2EF,
当EF取最小值时,即PM最短,
当PM⊥AD时,PM最短,
此时PM=AB=3,
∵MD=AD﹣AM=4,
在Rt△PMD中,PD,
∴当线段EF取得最小值时,线段PD的长度是5,
故答案为:5.
三.解答题(共5小题,满分40分)
17.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵EF=DA,
∴EF=BC,EF∥BC,
∴四边形BCEF是平行四边形,
又∵CE⊥AD,
∴∠CEF=90°,
∴平行四边形BCEF是矩形;
(2)解:∵四边形ABCD是平行四边形,
∴CD=AB=3,
∵CF=4,DF=5,
∴CD2+CF2=DF2,
∴△CDF是直角三角形,∠DCF=90°,
∴△CDF的面积DF×CECF×CD,
∴CE,
由(1)得:EF=BC,四边形BCEF是矩形,
∴∠FBC=90°,BF=CE,
∴BC,
∴EF.
18.(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵对角线BD上的两点M、N满足BM=DN,
∴OB﹣BM=OD﹣DN,即OM=ON,
∴四边形AMCN是平行四边形,
∵AC=2OM,
∴MN=AC,
∴平行四边形AMCN是矩形;
(2)解:由(1)得:MN=AC,
∵四边形ABCD是平行四边形,
∴AB=CD=2,AD∥BC,
∴∠ABC+∠BAD=180°,
∴∠ABC=45°,
∵AB⊥AC,
∴∠BAC=90°,
∴△ABC是等腰直角三角形,
∴AC=AB=2,
∴MN=2.
19.(1)证明:∵点O是AC中点,
∴AO=CO,
又∵OE=OD,
∴四边形ADCE为平行四边形,
∵AD是BC边上的高,
∴AD⊥DC,
∴∠ADC=90°,
∴四边形ADCE为矩形;
(2)解:∵四边形ADCE为矩形,
∴OE=AO=2,
∵点O是AC中点,
∴AO=2,AC=4,
又∵AB=AC,
∴AB=4.
20.(1)证明:∵AD∥BC,
∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,
∵∠ABC=∠ADC,
∴∠BAD=∠BCD,
∴四边形ABCD是平行四边形,
∴OA=OCAC,OB=ODBD,
∵OA=OB,
∴AC=BD,
∴四边形ABCD是矩形.
(2)解:作OF⊥BC于F,如图所示.
∵四边形ABCD是矩形,
∴CD=AB=1,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OFCD,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=1,
∴△OEC的面积 EC OF.
21.证明:(1)在△AOB和△COD中,
,
∴△AOB≌△COD(ASA),
∴BO=DO,
∵AO=CO,
∴四边形ABCD是平行四边形,
∵AO=BO=CO,BO=DO,
∴AO=BO=CO=DO,
∴AC=BD,
∴平行四边形ABCD是矩形;
(2)过点E作EF⊥BD于F,如图所示:
由(1)得:四边形ABCD是矩形,
∴∠BAD=90°,
∵BDAB,
∴△ABD是等腰直角三角形,
∴∠ABD=45°,
∵EF⊥BD,
∴∠EFB=∠EFD=90°,
∴△BEF是等腰直角三角形,
∴FE=FB,
∵DE平分∠ADB,
∴∠ADE=∠FDE,
在△ADE和△FDE中,
,
∴△ADE≌△FDE(AAS),
∴AD=FD,AE=FE,
∴AE=FB,
∵BD=FD+FB,
∴BD=AD+AE.