2022-2023学年北师大版七年级数学上册《2.11有理数的混合运算》同步练习题(附答案)
一.选择题
1.定义运算“@”的运算法则为:x@y=xy﹣y,如:3@2=3×2﹣2=4.那么(﹣3)@(﹣2)的运算结果是( )
A.8 B.﹣3 C.4 D.﹣4
2.若a与b互为相反数,c与d互为倒数,m的绝对值为2,则|m|﹣c×d+的值为( )
A.1 B.﹣2 C.1或﹣3 D.或
3.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是( )
甲:9﹣32÷8=0÷8=0
乙:24﹣(4×32)=24﹣4×6=0
丙:(36﹣12)÷=36×﹣12×=16
丁:(﹣3)2÷×3=9÷1=9
A.甲 B.乙 C.丙 D.丁
4.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于( )
A.1 B. C. D.2
5.任意大于1的正整数m的三次幂均可以“拆解”成m个连续奇数的和.例如:23=3+5,33=7+9+11,43=13+15+17+19,…以此类推,现已知m3的“拆解数”中有一个数是2077,则m的值是( )
A.45 B.46 C.47 D.48
6.设n!表示所有小于或等于该数的正整数的积,如4!=1×2×3×4,则计算的结果为( )
A.100 B.99 C.10000 D.9900
7.按图的程序计算,若x为任意整数,则输出的所有结果中,出现次数最多的结果是( )
A.﹣5 B.﹣7 C.﹣9 D.﹣13
8.下列各式正确的是( )
A.﹣2﹣1×6=(﹣2﹣1)×6
B.
C.(﹣1)2020+(﹣1)2021=1+(﹣1)
D.(﹣4×32)=(﹣4×3)2
9.下列变形不正确的是( )
A.5×(﹣6)=(﹣6)×5
B.[4×(﹣5)]×(﹣10)=4×[(﹣5)×(﹣10)]
C.[(﹣)+]×(﹣12)=(﹣)×(﹣12)+×(﹣12)
D.(﹣8)××(﹣1)×=(﹣8××1×)
二.填空题
10.用简便方法计算24×32×53+326×0.1256×(﹣0.25)5+()100×()99= .
11.计算2×(++)+(1﹣﹣﹣)﹣(+++)的结果是 .
12.计算:= .
三.解答题
13.观察下列运算过程:
22=2×2=4,;
,=;…
(1)根据以上运算过程和结果,我们发现:22= ;()2= ;
(2)仿照(1)中的规律,判断()3与()﹣3的大小关系;
(3)求(﹣)﹣4×()4÷()﹣3的值.
14.若a,b互为相反数,c,d互为倒数,|m|=2,试求:的值.
15.洪洪同学在电脑中设置了一个有理数的运算程序:输入数“a”加“★”键再输入“b”,就可以得到运算a★b=|2﹣a2|﹣+1.
(1)按此程序(﹣3)★2= ;
(2)若淇淇输入数“﹣1”加“★”键再输入“x”后,电脑输出的数为1,求x的值;
(3)嘉嘉同学运用淇淇设置的在这个程序时,屏幕显示:“该操作无法进行,”你能说出嘉嘉在什么地方出错了吗?
16.计算:
(1);
(2);
(3);
(4)(﹣2)2×3+(﹣3)3÷9.
17.计算:
(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);
(2);
(3);
(4).
18.计算:
(1)(﹣8)×(﹣7)÷(﹣);
(2);
(3)﹣14﹣(1﹣0.5)×﹣|1﹣(﹣5)2|;
(4).
19.计算:
(1)3+(﹣6)﹣(﹣7);
(2)(﹣22)×(﹣1)÷;
(3)(﹣﹣)×(﹣12);
(4)﹣12021﹣(﹣)×(﹣22+3)+×|3﹣1|.
20.计算:
(1)()÷;
(2)(﹣1)2021×|﹣1|+0.5÷(﹣).
21.计算:
①﹣2×3﹣|﹣4|;
②﹣32+(﹣)×(﹣8)+(﹣6)2;
③(1)×(﹣1);
④8÷(﹣6)﹣[﹣3+1×(﹣)].
22.计算:
(1);
(2).
23.对于任意有理数a、b、c、d,我们规定符号(a,b) (c,d)=ad﹣bc+2,例如:(1,3) (2,4)=1×4﹣2×3+2=0.
(1)求(﹣2,1) (3,5)的值;
(2)求(2a+1,a﹣2) (3a+2,a﹣3)的值,其中a2+a+5=0.
参考答案
一.选择题
1.解:∵x@y=xy﹣y,
∴(﹣3)@(﹣2)
=(﹣3)×(﹣2)﹣(﹣2)
=6+2
=8,
故选:A.
2.解:∵a与b互为相反数,c与d互为倒数,m的绝对值为2,
∴a+b=0,cd=1,|m|=2,
∴|m|﹣c×d+
=2﹣1+
=2﹣1+0
=1,
故选:A.
3.解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;
乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;
丙:(36﹣12)÷=36×﹣12×=16,做对了;
丁:(﹣3)2÷×3=9÷×3=81,原来没有做对.
故选:C.
4.∵x△(1△3)=2,
x△(1×2﹣3)=2,
x△(﹣1)=2,
2x﹣(﹣1)=2,
2x+1=2,
∴x=.
5.解:∵2077=2×1038+1,
∴2077是第1039个奇数,
∵23=3+5,33=7+9+11,43=13+15+17+19,…,
∴m3可以表示为m个连续的奇数相加,
∴从23到m3这些数字分解的奇数数字的个数总和为﹣1,
∵﹣1=1034,﹣1=1080,1034<1039<1080,1039﹣1034=5,
∴2077是463分解的5个奇数,
故选:B.
6.解:
=
=
=
=9900.
故选:D.
7.解:当x取负整数时,均能输出结果且互不相同,
x=﹣1时,输出的结果为﹣9,
x=﹣2时,输出的结果为﹣11,
x=﹣3时,输出的结果为﹣13,
,
x=0时,输出的结果为﹣7,
x=1时,输出的结果为﹣5,
x=2时,输出的结果为﹣13,
x=3时,输出的结果为﹣9,
x=4时,输出的结果为﹣5,
x=5时,输出的结果为﹣9,
x=6时,输出的结果为﹣9,
当x≥7的整数时,均不能输出结果.
综上,出现次数最多的结果是﹣9,
故选:C.
8.解:∵﹣2﹣1×6=﹣2﹣6,
∴选项A不符合题意;
∵=,
∴选项B不符合题意;
∵(﹣1)2020+(﹣1)2021=1+(﹣1)
∴选项C符合题意;
∵(﹣4×32)=(﹣4×9),
∴选项D不符合题意;
故选:C.
9.解:5×(﹣6)=(﹣6)×5,故选项A不符合题意;
[4×(﹣5)]×(﹣10)=4×[(﹣5)×(﹣10)],故选项B不符合题意;
[(﹣)+]×(﹣12)=(﹣)×(﹣12)+×(﹣12)],故选项C不符合题意;
(﹣8)××(﹣1)×=8××1×,故选项D符合题意;
故选:D.
二.填空题
10.解:24×32×53+326×0.1256×(﹣0.25)5+()100×()99
=(2×5)3×(2×32)+4×(86×0.1256)×(﹣4×0.25)5+()100×()99
=103×(2×9)+4×(8×0.125)6×(﹣1)5+×(×)99
=1000×18+4×16×(﹣1)+×199
=18000+4×1×(﹣1)+×1
=18000﹣4+
=17996.
故答案为:17996.
11.解:2×(++)+(1﹣﹣﹣)﹣(+++)
=(++)+(++)+(1﹣﹣﹣)﹣(+++)
=[(++)+(1﹣﹣﹣)]+[(++)﹣(+++)]
=(+++1﹣﹣﹣)+(++﹣﹣﹣﹣)
=1+(﹣)
=,
故答案为:.
12.解:原式=
=
=
=,
故答案为:.
三.解答题
13.解:(1)∵22=2×2=4,,
∴;
∵,=,
∴,
故答案为:;;
(2)()3=()﹣3,理由:
∵==,
==,
∴()3=()﹣3.
(3)原式=×÷23
=×
=16×
=2.
14.解:∵a,b互为相反数,c,d互为倒数,|m|=2,
∴a+b=0,cd=1,m=±2,
当m=2时,原式=0﹣1×2+22=2,
当m=﹣2时,原式=0﹣1×(﹣2)+(﹣2)2=6,
综上可知,的值为2或6.
15.解:(1)原式=|2﹣(﹣3)2|﹣+1
=|2﹣9|﹣+1
=7﹣+1
=7.5,
故答案为:7.5;
(2)根据题意得:|2﹣(﹣1)2|﹣+1=1,
解得:x=1;
(3)嘉嘉输入的第二个数为0,导致没有意义,
所以该操作无法进行.
16.解:(1)
=(﹣5)+(﹣3)
=﹣8;
(2)
=()+[(﹣)+(﹣1)]
=1+(﹣1)
=﹣;
(3)
=﹣4×(﹣2)﹣×48﹣×48+×48
=8﹣66﹣112+180
=10;
(4)(﹣2)2×3+(﹣3)3÷9
=4×3+(﹣27)÷9
=12+(﹣3)
=9.
17.解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)
=(﹣5)+(﹣4)+(﹣101)+9
=﹣101;
(2)
=﹣1×(4﹣9)+3×(﹣)
=﹣1×(﹣5)+(﹣4)
=5+(﹣4)
=1;
(3)
=(﹣+)×36
=×36﹣×36+×36
=15﹣28+24
=11;
(4)
=﹣×7﹣×(﹣9)﹣×(﹣8)
=﹣×[7+(﹣9)+(﹣8)]
=﹣×(﹣10)
=.
18.解:(1)(﹣8)×(﹣7)÷(﹣)
=﹣8×7×2
=﹣112;
(2)
=(﹣+)×(﹣24)
=×(﹣24)﹣×(﹣24)+×(﹣24)
=﹣16+18﹣4
=﹣2;
(3)﹣14﹣(1﹣0.5)×﹣|1﹣(﹣5)2|
=﹣1﹣×﹣|1﹣25|
=﹣1﹣﹣24
=﹣25;
(4)
=|﹣|×(﹣12)﹣×(﹣8)
=×(﹣12)+1
=﹣2+1
=﹣1.
19.解:(1)3+(﹣6)﹣(﹣7)
=3+(﹣6)+7
=4;
(2)(﹣22)×(﹣1)÷
=(﹣4)×(﹣)×3
=15;
(3)(﹣﹣)×(﹣12)
=×(﹣12)﹣×(﹣12)﹣×(﹣12)
=(﹣9)+4+10
=5;
(4)﹣12021﹣(﹣)×(﹣22+3)+×|3﹣1|
=﹣1﹣(﹣)×(﹣4+3)+×2
=﹣1+×(﹣1)+1
=﹣1+(﹣)+1
=﹣.
20.解:(1)()÷
=(+﹣)×24
=×24+×24﹣×24
=6+9﹣14
=1;
(2)(﹣1)2021×|﹣1|+0.5÷(﹣)
=(﹣1)×+×(﹣3)
=﹣+(﹣)
=﹣3.
21.解:①﹣2×3﹣|﹣4|
=﹣6﹣4
=﹣10;
②﹣32+(﹣)×(﹣8)+(﹣6)2
=﹣9+4+36
=31;
③(1)×(﹣1)
=×(﹣)﹣×(﹣)﹣×(﹣)
=﹣2+1+
=﹣;
④8÷(﹣6)﹣[﹣3+1×(﹣)]
=8÷(﹣6)﹣(﹣3﹣×).
=8÷(﹣6)﹣(﹣3﹣)
=8÷(﹣6)+
=﹣+
=2.
22.解:(1)
=﹣9÷3+(﹣)×12﹣1
=﹣3+(﹣2)+(﹣1)
=﹣6;
(2)
=﹣4×(﹣)+8÷4
=2+2
=4.
23.解:(1)∵(a,b) (c,d)=ad﹣bc+2,
∴(﹣2,1) (3,5)
=(﹣2)×5﹣1×3+2
=(﹣10)﹣3+2
=﹣11;
(2)∵(a,b) (c,d)=ad﹣bc+2,
∴(2a+1,a﹣2) (3a+2,a﹣3)
=(2a+1)(a﹣3)﹣(a﹣2)(3a+2)+2
=2a2﹣5a﹣3﹣3a2+4a+4+2
=﹣a2﹣a+3,
∵a2+a+5=0,
∴a2+a=﹣5,
∴原式=﹣(a2+a)+3=﹣(﹣5)+3=5+3=8.