安国市实验中学第五单元化学方程式学案

文档属性

名称 安国市实验中学第五单元化学方程式学案
格式 zip
文件大小 1.0MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 化学
更新时间 2013-10-16 07:54:41

图片预览

文档简介

安国市实验中学2013——2014学年度第一学期九年级化学
导学案设计
第五单元 化学方程式 课题1 质量守恒定律
执笔教师 吕朋娜 使用时间____
学习目标
1、理解质量守恒定律以及守恒的原因,学会运用质量守恒定律解释和解决一些化学现象和问题。
2、通过实验及分析,培养学生利用实验发现问题、探究问题的能力。
3、通过对化学反应实质与质量守恒原因的分析,培养学生的逻辑推理能力,使学生了解研究化学问题的基本思路。
学习重点 理解质量守恒定律的涵义
难点 微观理解质量守恒定律的本质。
【课前预习】
1、托盘天平的使用:使用天平时,首先要检查__________________,称量
时,称量物放在_________,砝码放__________。砝码要用_______夹取。
2、我知道的化学反应有(任写两个)__________________、____________
_____,判断化学变化的依据________________________________
3、提出问题:物质发生化学反应后,总质量是否改变?如果改变是增加还
是减少?
你的猜想:物质发生化学变化前后,其总质量__________________,猜
想的依据是____________________________________________________.
【课堂探究】
提出问题:在化学反应中物质的质量会有什么变化呢?
你的猜想:(1)
(2)
(3)
实验探究:老师演示实验和自己动手实验,观察现象并记录,完成实验报告。
实验名称
变化时的现象
变化后天平是否平衡
反应表达式
结论
白磷燃烧
铁钉与硫酸铜溶液的反应
盐酸与碳酸钠的反应
镁条燃烧
交流讨论:
归纳质量守恒定律的内容: .
为什么物质在发生化学反应前后,各物质的质量总和相等呢?
你认为实验成功的关键因素是什么?如何改进第三,四实验装置?
【有效训练】
1.在化学反应中,反应前后一定没有改变的是 ( )
A.分子的种类 B.分子的数目 C.物质的种类 D.原子的数目
2.某物质加热分解生成氧化铁和水,则该物质中含有的全部元素是 ( )
A.Fe、O B.Fe、O、H C.Fe、H D.O、H
3.在化学反应M+N═P+Q中,a g M和b g N完全反应,生成c g P,则生成Q的质量为A.(a-c+b)g B.(a+c-b)g C.(b+c-a)g D.无法确定 ( )
4.镁带在耐高温的容器中(内含氧气)密封加热,下图能正确表示容器里所盛的物质总质量变化的是 ( )
A. B. C. D.
【课后提升】
1.化学反应的实质是 ( )
A.分子的间隔发生改变 B.分子的运动速度改变
C.原子的种类发生改变 D.原子重新组合
2.a g白磷在b g氧气中燃烧,生成五氧化二磷的质量 ( )
A.一定是(a+b)g B.一定不足(a+b)g C.大于(a+b)g D.小于等于(a+b)g
3. 某可燃物燃烧后生成的产物中有二氧化碳、二氧化硫和一氧化碳,则该可燃物中一定含有???? ??元素,可能含有??????元素。
4、加热a g氯酸钾和bg二氧化锰的混合物,完全反应后,剩余固体的质量为c g ,则生成氧气的质量为( )g A、 c-(a+b) B 、 a+b-c C、 a-c D 、 a+b+c
5、在一个密闭容器中由X、Y、Z、Q四种物质,一定条件下充分反应,测量反应前后各物质的质量如下表所示:下列说法中不正确的是( )
物质
X
Y
Z
Q
反应前质量/g
4
10
1
25
反应后质量/g
未测
21
10
9
A.该反应为分解反应 B.该反应遵守质量守恒定律
C. X中未测值为零 D. 若Q为氧气,则该反应为氧化反应
9.下列各变化能用质量守恒定律解释的是( )
A.食盐逐渐溶解在水中 B.潮湿的衣服在阳光下晒干
C.空气液化后再蒸发得到气态的氮气和液态氧气D.蜡烛燃烧后,越来越短,最终消失
10.某物质R在氧的作用下发生反应:2R +2H2O + 7O2 = 2FeSO4 + 2H2SO4,则R的化学式是( )
A.FeS B.Fe2S3 C.FeO D.FeS2
课后反思
安国市实验中学2013——2014学年度第一学期九年级化学
导学案设计
第五单元 化学方程式 课题2 如何正确书写化学方程式
执笔教师 吕朋娜 使用时间____
一.学习目标:
(1)理解化学方程式的涵义。 (2)了解书写化学方程式应遵守的原则。
(3)能正确书写简单的化学方程式。(4)培养思维的有序性和严密性。
二.学习重点:化学方程式的涵义及配平方法
第一课时
【课前预习】
1.在化学反应前后,肯定没有变化的是( ),肯定发生变化的是( )
①原子数目 ②分子数目 ③元素种类 ④物质的总质量
⑤物质的种类 ⑥原子的种类 ⑦分子的种类
2、写出下列反应的文字表示式,并在各物质名称下面写出化学式。
(1)硫在氧气中燃烧
(2)镁在空气中燃烧
(3)氢气在氧气中燃烧
(4)过氧化氢制氧气
【课堂探究】
1、下列四种方式都可以表示铁丝在氧气中燃烧的反应。你认为哪种方式更
能简捷、准确地记录和描述这一反应?它有哪些优点?
①细铁丝在氧气中燃烧生成四氧化三铁 ②铁 + 氧气四氧化三铁
③ Fe +O2Fe3O4 ④ 3 Fe +2O2Fe3O4
2、自学课本第96页至97页,回答以下问题:
(1)书写化学方程式遵循的原则: ;

配平的目的: 。
配平的标志: 。
【教师精讲】
(一) 化学方程式的概念:

(二)化学方程式的意义
提出问题:一个化学方程式能提供给我们哪些信息?(以C+O2CO2为例)
讨论回答:(1)
(2)
(3)
归纳总结:
质的方面:表示 和 及反应条件。
宏观上:表示 和 之间的质量比;

微观上:表示反应物和生成物之间的 比。
【有效训练】
1.在反应3Fe+2O2 Fe3O4中,Fe、O2、Fe3O4三种物质的质量比为( )
A.3∶2∶1 B.56∶16∶232 C.56∶32∶232 D.168∶64∶232
2.在反应Cu+4HNO3═Cu(NO3)2 +2X+2H2O中X的化学式是 ( )
A.N2O5 B.N2 C.NO D.NO2
3.在化学方程式aC2H6+bO2══mCO2+nH2O中,各计量数关系正确的是 ( )
A.2m=a B.3n=2a C.3n=a D.2b=2m+n
4. 工业上利用下列反应制取金属Hg:4HgS+4CaO=4Hg+3X+CaSO4。该反
应中X的化学式为 ( )
A. CaS B. SO2 C. SO3 D. CaSO3
5. 下列关于化学反应xA + yB = mC + nD(x、y、m、n为化学计量数)的说法中,
一定正确的是 ( )
A. x + y = m + n B. 若生成物中有水,该反应是中和反应
C. 参加反应的A和B的质量比等于生成物C和D的质量比
D. 若A和B的质量都为a g,充分反应后生成物的总质量小于或等于2a g
【课后反思】
安国市实验中学2013——2014学年度第一学期九年级化学
导学案设计
第五单元 化学方程式 课题2 如何正确书写化学方程式
执笔教师 吕朋娜 使用时间____
一.学习目标:
(1)理解化学方程式的涵义。 (2)了解书写化学方程式应遵守的原则。
(3)能正确书写简单的化学方程式。(4)培养思维的有序性和严密性。
二.学习重点:化学方程式的涵义及配平方法
第二课时
【课前预习】
前几年有些别有用心的人宣扬“水变燃油”,想一下可能吗?
为什么?
(一)书写方程式遵循的原则
一是必须以 为基础;
二是遵守 定律。
[思考1]P+O2P2O5,这个式子能不能称为化学方程式?
[思考2]怎样才能使它成为符合质量守恒定律的化学方程式呢?
【合作交流】
(二)书写方程式的步骤(看书归纳)
①“写”:用化学式正确表示反应物和生成物;
②“配”:在反应物和生成物的化学式前面配上适当的化学计量
数,使反应前后各种原子的数目不变;
③“注”:在“等号”上方用文字或符号注明必要的反应条件[
点燃、加热(常用“△”表示)、光照、通电、高温],注明
必要的“↑”或“↓”。
【教师精讲】
配平化学方程式的常用方法:
(1)奇数配偶法;(2)最小公倍数法;(3)观察法;(4)分析法。
【课堂练习】
用化学方程式表示下列反应:
(1)用过氧化氢制氧气 ;
(2)铁在氧气中燃烧 ;
(3)碳在氧气中不充分燃烧 ;
(4)二氧化碳通入石灰水中 。
【有效训练】
1.下列化学方程式书写正确的是 ( )
A.H2+O2═H2O B.Mg+O2══MgO2
C.3Fe+2O2══Fe3O4 D.H2O2══H2O+O2↑
2. 古代“银针验毒”的原理是:4Ag+2H2S+O2═2X+2H2O,X的化学式为 ( )
A.AgS B.Ag2O C.Ag2S D.Ag2O2
3. 完全燃烧2.8g某有机物,生成8.8g CO2和3.6g H2O,下列对该有机物的判断正确的 ( )
A.该有机物一定含碳、氢、氧元素 B.该有机物的化学式为CH4
C.该有机物的相对分子质量为46
D.该有机物由碳、氢元素组成,且碳、氢元素的质量比为6:1
14. 在一密闭容器中,有甲、乙、丙丁四种物质,在一定条件下存在某个反应,测得反应前后各物质的质量如下表:对该反应,下列描述中正确的是
物质




反应前质量/g
20
m
8
6
反应后质量/g
4
待测
28
2
A. “待测数值一定为2g
B. 乙一定是该反应的催化剂
C. 反应中甲和丙的质量比为1:7
D. 该反应可能是铜与氧气的反应
5.NO是大气污染物之一,目前有一种治理的方法,即在400℃左右、催化剂条件
下,用氨气(NH3)和NO反应生成水和一种气体单质。则该反应的化学方程式为:

【课后反思】

安国市实验中学2013——2014学年度第一学期九年级化学
导学案设计
第五单元 化学方程式 课题3 利用化学方程式的简单计算
执笔教师 吕朋娜 使用时间____
一.学习目标:
(1)在正确书写化学方程式的基础上,进行简单的计算。
(2)培养学生按照化学特点进行思维及审题、分析、计算能力。
(3)认识定量研究对于化学科学发展的重大作用。
二.学习重点:
根据化学方程式计算及书写格式要规范化
第一课时
【课前预习】
1、写出下列反应的化学方程式
(1)用高锰酸钾加热的方法制氧气

(2)氢气和氧化铜加热条件下的反应

(3)用氯酸钾在二氧化锰作催化剂并加热的条件下制氧气

2、在4P+5O22P2O5的反应中, 份质量的磷跟
份质量的氧气起反应,生成 份质量的
五氧化二磷。
【课堂探究】
提出问题:
根据化学方程式所表示的含义,可以知道反应物与生成物之
间存在质量关系。而研究物质的化学变化常涉及到量的计算,
例如,用一定量的原料最多可以生产出多少产品?制备一定
量的产品最少需要多少原料?等等。通过这些计算,可以加
强生产的计划性。并有利于合理地利用资源,而这些计算的
进行都需要根据化学方程式。本节就是从“量”的角度来研
究化学方程式的汁算的。
[例题1]加热分解6 g高锰酸钾,可以得到多少克氧气?
[分析]这道题是已知反应物的质量来求生成物的质量,即已知原料
的质量求产品的质量。要求:看书后把解题步骤默写在下面
[思考]根据刚才对例题1的阅读和讲解说出根据化学方程式计算
的解题步骤分为几步?
[学生思考、讨论并回答]
【有效训练】
1.用氢气还原氧化铜,要得到6.4 g铜,需要多少克氧化铜?
2.5.6g铁跟足量的稀硫酸反应,可制得氢气多少克?
(Fe+H2SO4=FeSO4+H2↑)
【课后反思】
安国市实验中学2013——2014学年度第一学期九年级化学
导学案设计
第五单元 化学方程式 课题3 利用化学方程式的简单计算
执笔教师 吕朋娜 使用时间____
一.学习目标:
(1)在正确书写化学方程式的基础上,进行简单的计算。
(2)培养学生按照化学特点进行思维及审题、分析、计算能力。
(3)认识定量研究对于化学科学发展的重大作用。
二.学习重点:
根据化学方程式计算及书写格式要规范化
第二课时
【合作交流】
[例题2]工业上高温煅烧石灰石(CaCO3)可制得生石灰(CaO)和二
氧化碳,如果要制取10 t氧化钙,需要碳酸钙多少吨?
[分析]这道题是已知生成物的质量来求反应物的质量,即已知产
品的质量求原料的质量。要求:看书后把解题步骤默写在
下面

提出问题:根据上述两例可知,已知反应物的质量可以求生成物
的质量,已知生成物的质量也可求出反应物的质量,那么,
假如已知一种反应物的质量可不可以求另一种反应物的质量,
或者已知一种生成物的质量可不可以求另一种生成物的质量呢?
【教师精讲】
[注意事项]
化学方程式反映的是纯物质问的质量关系,因此遇到不纯
物,要先把不纯的反应物或生成物的质量换算成纯物质的质
量,才能代入化学方程式进行计算。
【有效训练】
1、要让3g镁条完全燃烧,需要氧气的质量是( )
A、2g B、1g C、1.5g D、无法计算
2、铝在氧气中燃烧生成氧化铝。在这个反应中,铝、氧气、氧化铝的质量比是()
A、27∶32∶102 B、27∶24∶43
C、4∶3∶2 D、108∶96∶204
3、在化学反应3X+4Y =2Z中,已知X和Z相对分子质量为32和102,则Y的相对分子质量为________________。
4、8g氧气能使多少克的氢气完全燃烧?同时生成多少克水?

碳在高温时与氧化铜反应生成铜和二氧化碳。计算要使80克氧化铜完全反应,需要碳的质量至少是多少?
氢气在氯气中燃烧生成氯化氢气体,燃烧100 g氢气需要氯气多少克?生成氯化氢气体多少克?
【课后反思】
安国市实验中学2013——2014学年度第一学期九年级化学
导学案设计
第五单元 化学方程式 复习学案
执笔教师 吕朋娜 使用时间____
【学习目标】
1.认识质量守恒定律,能说明常见化学反应中的质量关系;能从微观角度认识在一切化学反应中,反应前后原子的种类和原子的数目没有增减。
2.理解化学方程式的涵义,了解书写化学方程式要遵守的原则。能正确书写简单的化学方程式。
3、掌握有关反应物、生成物质量的计算;掌握化学计算的解题格式,锻炼化学计算题的解题能力;通过有关化学反应的计算,能从定量的角度理解化学反应。
【课前预习】
一、质量守恒定律
1.内容: 化学反应的各物质的质量总和等于反应后
的各物质的质量总和。
2.微观解释:在化学反应前后,原子的 、 、 均保
持不变(原子的三不变)
3.化学反应前后
(1)一定不变 宏观:反应物和生成物的 不变;元素的
和 不变。
微观:原子的 、 、 不变
(2)一定改变 宏观: 的种类一定改变
微观: 的种类一定改变
(3)可能改变 的数目可能改变
二、化学方程式
1.书写原则 (1) (2)
2.含义:以2H2+O2点燃 2H2O为例
(1) (2)
(3)
三、基本反应类型(用字母A. B. C. D来表示):
(1)化合反应: (2) 分解反应
【课堂探究】
【典题精练】
知识点一:质量守恒定律的理解及其应用
【例1】对质量守恒定律的正确理解是(? )
A.参加反应的各物质的质量不变B.反应前后各物质的质量不变
C.化学反应前的各物质质量总和等于反应后生成的各物质质量总和
D.参加反应的各物质质量总和与反应后生成的各物质质量总和相
【例2】为防止煤气逸散使人中毒,常在煤气中加入少量的有特殊刺激
性气味的乙硫醇(C2H5SH)。乙硫醇在煤气燃烧过程中也可以充分燃
烧,其化学方程式为:,
则X的化学式为 ( )
A. B.SO3 C.SO2 D.CO2
【例3】下列变化中属于化学变化,并能用质量守恒定律解释的是 ( )
A.5g水受热变成5g水蒸气
B.5g食盐溶解在95g水中,成为100g食盐溶液
C.100mL水加入100mL酒精,体积小于200mL
D.木炭燃烧后质量减少
【例4 】a g镁在氧气中完全燃烧后,得到b g白色固体,此时参加反应
的氧气为 ( )
A.(a+b)g B.(a-b)g C.(b-a)g D.无法判断
【变式训练】
1、根据质量守恒定律,化学方程式:4HNO3=2H2O+4X+O2↑中,X的化学式
为 ( )
A NO B NO2 C N2O3 D N2O5
2.某物质在空气中燃烧的生成物是二氧化碳、 二氧化硫和水,这种物质的
成分有 ( )
A. 只含有碳元素、硫元素和氢元素
B. 一定含有碳、硫、氢元素,还可能含有氧元素
C. 硫元素和氢元素的原子个数比为1:2
D. 硫元素和氧元素的原子个数比为1:2
3.下列现象不能用质量守恒定律解释的是 ( )
A.将2g氢气在20g氧气中燃烧生成18g水
B.将20mL酒精与20mL水混合总体积小于40mL
C.将浓硫酸置于空气中一段时间溶液质量增加
D.将CO2的水溶液加热,溶液质量减轻
5.在A+2BC+2D的反应中,9.8gA和8gB完全反应生成14.2gC,同时得到
D______g。
6.A、B、C三种物质各15g,当它们相互反应完成时生成30g新物质D,若再
增加10gC,它们又继续反应完成时,A与C恰好消耗完毕。则参加反应
的A与B的质量比 ( )
A、2:3 B、2:1 C、3:2 D、1:I
知识点二:化学方程式
【例1】下列化学方程式中有错误的是 ( )
A. B.
C. D.
【例2】小明从化学方程式4P+5O2 点燃 2P2O5中总结的信息有:①参加反
应的物质是磷和氧气 ②反应条件是点燃 ③反应前后分子的总数不变
④反应前后元素的种类不变。其中正确的是 ( )
A.①②③ B.①②④ C.①③ D.②③④
【变式训练】
根据下列信息,写出有关的化学方程式:
(1)在空气中点燃红磷。 ;
(2)镁跟氧在点燃的条件下反应。 ;
知识点三:化学方程式的计算
【例1】在反应X+2Y=R+2M中,当1.6gX与Y完全反应后,生成44gR,且反
应生成的R和M的质量之比为11︰9,则在此反应中Y和M的质量之比( )
A.23︰9 B.19.6︰9 C.32︰9 D.46︰9
【例2】2.32g某金属氧化物在H2流中加热到反应完全后,得到1.68g金属。
若此金属的相对原子质量为56,则此金属氧化物的化学式为 ( )
A.RO B.R2O3 C.R3O4 D.R2O5
【变式训练】
1、在化学反应3X+4Y=2Z中,已知X和Z的相对分子质量分别是32和102,
则Y的相对分子质量为__ __。
2、将A物质10克、B物质20克混合加热至高温,反应后剩余A物质4克,
剩余B物质2克,同时生成C物质22克,D物质若干克。则D物质的质
量为 克;参加反应的各种物质和生成的各种物质之间的质量比:
A:B:C:D为 。如果A、B、C、D的式量分别为12、18、44、2,则
在化学方程式中A、B、C、D四种物质的计量数分别是 、 、
、 ,化学方程式是 。
【教师精讲】
质量守恒定律是初中化学的一个核心定律,一直是必考的知识点,不仅是
化学方程式的书写的依据,而且是化学方程式的计算依据。
书写和配平化学方程式及其量的意义是历年中考热点和必考之点,一定要
熟练书写常见的化学方程式。在中考的试题中特别注重考查学生对质量守恒
定律的理解和应用。
根据化学方程式的计算是从量的角度研究化学变化的一种方法,它是化学
计算的重要形式之一。考查重点是质量守恒定律的理解和应用。计算反应
物和生成物各物质间的质量比;根据生成物(反应物)求反应物(生成物)
的质量等计算;考查考生的阅读能力和分析数据的能力来解决生产和生活
实际中的问题。
【当堂达标】
2.镁带在耐高温的容器中密封(内含空气)加热,在图中,能正确表示容器里所盛的物质总质量变化的是 ( )
3、某物质R与水和氧气发生化学反应为:2R+2H2O+7O2=2FeSO4+2H2SO4,推断R的化学式为( )
A.FeS B.Fe2S3 C.FeO D.FeS2
6、25克M物质与5克N物质发生反应,所得混合物中含有10克M和11克P,还有一种新物质Q,若M、N、P、Q的相对分子质量分别为30、20、44、18,则下列化学方程式正确的是 ( )
A、 M+N=P+Q B、 M+2N=2P+Q C、 2M+N=2P+Q D、 2M+N=P+2Q
7、成下列化学反应方程式,并简答有关问题:
化学反应
化学反应方程式
简答
实验室制取氧气
反应类型
硫在氧气中燃烧
火焰颜色为_______色
8、某同学说:根据质量守恒定律,2克氢气跟8克氧气起反应,一定生成10克水。他的说法对吗?为什么?
9.煅烧含碳酸钙80%的石灰石100t,生成二氧化碳多少吨?若石灰石中的杂质全部进入生石灰中,可得到这样的生石灰多少吨?
第一章 有理数
课题:1.1 正数和负数(1)
【学习目标】:1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念
【导学指导】:
一、知识链接:
1、小学里学过哪些数请写出来: 、 、 。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
(3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:
1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:,,3.14,+3065,0,-239;
则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( )
A.0既是正数,又是负数 B.O是最小的正数
C.0是最大的负数 D.0既不是正数,也不是负数
5.给出下列各数:-3,0,+5,,+3.1,,2004,+2010;
其中是负数的有 ……………………………………………………( )
A.2个 B.3个 C.4个 D.5个
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做 ,小于0的数叫做 。
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【拓展训练】:
1.零下15℃,表示为_________,比O℃低4℃的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
【总结反思】:
课题:1.1正数和负数(2)
【学习目标】:
1、会用正、负数表示具有相反意义的量;
2、通过正、负数学习,培养学生应用数学知识的意识;
【学习重点】:用正、负数表示具有相反意义的量;
【学习难点】:实际问题中的数量关系;
【导学指导】
一、知识链接.
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。
问题:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明。
参考例子:温度表示中的零上,零下和零度。
二.自主探究
问题:(课本第4页例题)
先引导学生分析,再让学生独立完成
例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
2)2001年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%, 中国增长7.5%.
写出这些国家2001年商品进出口总额的增长率;
解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;
2)六个国家2001年商品进出口总额的增长率:
美国___________ 德国__________
法国___________ 英国__________
意大利__________ 中国__________
【课堂练习】
1.课本第4页练习
2、阅读思考

(课本第8页)用正负数表示加工允许误差;

问题:直径为30.032mm和直径为29.97的零件是否合格?


【要点归纳】
1、本节课你有那些收获?
2、还有没解决的问题吗?
【拓展训练】
1)甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是 ;
2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
【总结反思】:
课题:1.2.1 有理数
【学习目标】:
1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准与集合的含义;
3、体验分类是数学上常用的处理问题方法;
【学习重点】:正确理解有理数的概念
【学习难点】:正确理解分类的标准和按照一定标准分类
【导学指导】
一、温故知新
1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)
__________________________________________
二、自主探究
问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;
该分为几类,又该怎样分呢?先分组讨论交流,再写出来

分为 类,分别是:
引导归纳:
统称为整数, 统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?
师生共同交流、归纳
2、正数集合与负数集合
所有的正数组成 集合,所有的负数组成 集合
【课堂练习】
1、P8练习(做在课本上)
2.把下列各数填入它所属于的集合的圈内:
15, -, -5, , , 0.1, -5.32, -80, 123, 2.333;
正整数集合 负整数集合
正分数集合 负分数集合
【要点归纳】:
有理数分类
或者
【拓展训练】
1、下列说法中不正确的是……………………………………………( )
A.-3.14既是负数,分数,也是有理数
B.0既不是正数,也不是负数,但是整数
c.-2000既是负数,也是整数,但不是有理数
D.O是正数和负数的分界
2、在下表适当的空格里画上“√”号
有理数
整数
分数
正整数
负分数
自然数
-8是
-2.25是

0是

【总结反思】:

课题:1.2.2数轴
【学习目标】:
1、掌握数轴概念,理解数轴上的点和有理数的对应关系;
2、会正确地画出数轴,利用数轴上的点表示有理数;
3、领会数形结合的重要思想方法;
【重点难点】:数轴的概念与用数轴上的点表示有理数;
【导学指导】
一、知识链接
1、观察下面的温度计,读出温度.分别是 °C、 °C、 °C;
2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树
和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一
情境?
东
汽车站
请同学们分小组讨论,交流合作,动手操作
二、自主探究
1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?
2、自己动手操作,看看可以表示有理数的直线必须满足什么条件?
引导归纳:
1)、画数轴需要三个条件,即 、 方向和 长度。
2)数轴
【课堂练习】
1、请你画好一条数轴

2、利用上面的数轴表示下列有理数
1.5, —2, 2, —2.5, , 0;
3、 写出数轴上点A,B,C,D,E所表示的数:
三、寻找规律
1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?

2、每个数到原点的距离是多少?由此你又有什么发现?

3、进一步引导学生完成P9归纳
【要点归纳】:
画数轴需要三个条件是什么?
【拓展练习】
1、在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有 个。
2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是( )
A.-5, B.-4 C.-3 D.-2
3、你觉得数轴上的点表示数的大小与点的位置有什么关系?
【总结反思】:


课题:1.2.3 相反数
【学习目标】:
1、掌握相反数的意义;
2、掌握求一个已知数的相反数;
3、体验数形结合思想;
【学习重点】:求一个已知数的相反数;
【学习难点】:根据相反数的意义化简符号。
【导学指导】
一、温故知新
1、数轴的三要素是什么?在下面画出一条数轴:
2、在上面的数轴上描出表示5、—2、—5、+2 这四个数的点。
3、观察上图并填空: 数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。
从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是 ,它们分别在原点的左边和右边,我们说,这两点关于原点对称。
二、自主学习
自学课本第10、11的内容并填空:
1、相反数的概念
像2和—2、5和—5、3和—3这样,只有 不同的两个数叫做互为相反数。
2、练习
(1)、2.5的相反数是 ,—和 是互为相反数, 的相反数是2010;
(2)、a和 互为相反数,也就是说,—a是 的相反数
例如a=7时,—a=—7,即7的相反数是—7.
a=—5时,—a=—(—5),“—(—5)”读作“-5的相反数”,而—5的相反数是5,所以,
—(—5)=5
你发现了吗,在一个数的前面添上一个“—”号,这个数就成了原数的
(3)简化符号:-(+0.75)= ,-(-68)= ,
-(-0.5 )= ,-(+3.8)= ;
(4)、0的相反数是 .
3、数轴上表示相反数的两个点和原点的距离 。
【课堂练习】 P11第1、2、3题
【要点归纳】:
1、本节课你有那些收获?
2、还有没解决的问题吗?
【拓展训练】
1.在数轴上标出3,-1.5,0各数与它们的相反数。
  
2.-1.6的相反数是 ,2x的相反数是 ,a-b的相反数是 ;
  
3. 相反数等于它本身的数是 ,相反数大于它本身的数是 ;

4.填空:
(1)如果a=-13,那么-a= ;
(2)如果-a=-5.4,那么a= ;
(3)如果-x=-6,那么x= ;
(4)-x=9,那么x= ;
5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。
【总结反思】:
课题:1.2.4绝对值
【学习目标】:
1、理解、掌握绝对值概念.体会绝对值的作用与意义;
2、掌握求一个已知数的绝对值和有理数大小比较的方法;
3、体验运用直观知识解决数学问题的成功;
【重点难点】:绝对值的概念与两个负数的大小比较
【导学指导】
一、知识链接
问题:如下图
小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线 (填相同或不相同),他们行走的距离(即路程远近)
二、自主探究
1、由上问题可以知道,10到原点的距离是 ,—10到原点的距离也是
到原点的距离等于10的数有 个,它们的关系是一对 。
这时我们就说10的绝对值是10,—10的绝对值也是10;
例如,—3.8的绝对值是3.8;17的绝对值是17;—6的绝对值是
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣。
2、练习
(1)、式子∣-5.7∣表示的意义是 。
(2)、—2的绝对值表示它离开原点的距离是 个单位,记作 ;
(3)、∣24∣= . ∣—3.1∣= ,∣—∣= ,∣0∣= ;
3、思考、交流、归纳
由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;
0的绝对值是 。
用式子表示就是:
1)、当a是正数(即a>0)时,∣a∣= ;
2)、当a是负数(即a<0)时,∣a∣= ;
3)、当a=0时,∣a∣= ;
4、随堂练习 P12第1、2大题(直接做在课本上)
5、阅读思考,发现新知
阅读P12问题—P13第12行,你有什么发现吗?
在数轴上表示的两个数,右边的数总要 左边的数。
也就是:
1)、正数 0,负数 0,正数大于负数。
2)、两个负数,绝对值大的 。
【课堂练习】:
1、自学例题 P13 (教师指导)
2、比较下列各对数的大小:—3和—5; —2.5和—∣—2.25∣
【要点归纳】:
一个正数的绝对值是 ;一个负数的绝对值是它的 ;
0的绝对值是 。
【拓展练习】
1.如果,则的取值范围是 …………………………( )
A.>O B.≥O C.≤O D.<O
2.,则; ,则.
3.如果,则,.
4.绝对值等于其相反数的数一定是…………………………………( )
A.负数 B.正数 C.负数或零 D.正数或零
5.给出下列说法:
①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;
③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等.
其中正确的有…………………………………………………( )
A.0个 B.1个 C.2个 D.3个
【总结反思】:
课题:1.3.1有理数的加法(1)
【学习目标】:
1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;
2、会利用有理数加法运算解决简单的实际问题;
【学习重点】:有理数加法法则
【学习难点】:异号两数相加
【导学指导】
一、知识链接
1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。
于是红队的净胜球数为 4+(-2),
蓝队的净胜球数为 1+(-1)。
这里用到正数和负数的加法。那么,怎样计算4+(-2)
下面我们一起借助数轴来讨论有理数的加法。
二、自主探究
1、借助数轴来讨论有理数的加法
1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是:
2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两
次共向西走多少米?很明显,两次共向西走了 米。
这个问题用算式表示就是:
如图所示:
3) 如果向西走2米,再向东走4米, 那么两次运动后,这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示:
4)利用数轴,求以下情况时这个人两次运动的结果:
①先向东走3米,再向西走5米,这个人从起点向( )走了( )米;
②先向东走5米,再向西走5米,这个人从起点向( )走了( )米;
③先向西走5米,再向东走5米,这个人从起点向( )走了( )米。
写出这三种情况运动结果的算式

5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人
从起点向东(或向西)运动了 米。写成算式就是
2、师生归纳两个有理数相加的几种情况。
3.你能从以上几个算式中发现有理数加法的运算法则吗?
有理数加法法则
(1)同号的两数相加,取 的符号,并把 相加。
(2)绝对值不相等的异号两数相加,取 的加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 ;
(3)一个数同0相加,仍得 。
4.新知应用
例1 计算(自己动动手吧!)
(1) (-3)+(-9); (2) (-4.7)+3.9.
例2 (自己独立完成)
【课堂练习】:
1.填空:(口答)
(1)(-4)+(-6)= ; (2)3+(-8)= ;
(4)7+(-7)= ; (4)(-9)+1 = ;
(5)(-6)+0 = ; (6)0+(-3) = ;
2. 课本P18第1、2题
【要点归纳】:
有理数加法法则:
【拓展训练】:
1.判断题:
(1)两个负数的和一定是负数;
(2)绝对值相等的两个数的和等于零;
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。
2.已知│a│= 8,│b│= 2;
(1)当a、b同号时,求a+b的值;
(2)当a、b异号时,求a+b的值。
【总结反思】:
课题:1.3.1有理数的加法(2)
【学习目标】:掌握加法运算律并能运用加法运算律简化运算;
【重点难点】:灵活运用加法运算律简化运算;
【导学指导】
一、温故知新
1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面: 、
2、计算
⑴ 30 +(-20)= (-20)+30=
⑵ [ 8 +(-5)] +(-4)= 8 + [(-5)]+(-4)]=
思考:观察上面的式子与计算结果,你有什么发现?
二、自主探究
1、请说说你发现的规律
2、自己换几个数字验证一下,还有上面的规律吗
3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,
即:两个数相加,交换加数的位置,和 .式子表示为
三个数相加,先把前两个数相加,或者先把后两个数相加,和
用式子表示为
想想看,式子中的字母可以是哪些数?
例1 计算: 1)16 +(-25)+ 24 +(-35)
2)(—2.48)+(+4.33)+(—7.52)+(—4.33)

例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:
91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
想一想,你会怎样计算,再把自己的想法与同伴交流一下。
【课堂练习】
课本P20页练习 1、2
【要点归纳】:
你会用加法交换律、结合律简化运算了吗?
【拓展训练】
1.计算:
(1)(-7)+ 11 + 3 +(-2); (2)

2.绝对值不大于10的整数有 个,它们的和是 .
3、填空:
(1)若a>0,b>0,那么a+b 0.
(2)若a<0,b<0,那么a+b 0.
(3)若a>0,b<0,且│a│>│b│那么a+b 0.
(4)若a<0,b>0,且│a│>│b│那么a+b 0.
3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?
4、课本P20实验与探究
【总结反思】:
课题:1.3.2有理数的减法(1)
【学习目标】:
1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则;
2、会正确进行有理数减法运算;
3、体验把减法转化为加法的转化思想;
【重点难点】:有理数减法法则和运算
【导学指导】
一、知识链接
1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为 —154米,两处的高度相差多少呢?
试试看,计算的算式应该是 .能算出来吗,画草图试试
2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3―(―2);
想想看,温差到底是多少呢?那么,3―(―2)= ;
二、自主探究
1、还记得吗,被减数、减数差之间的关系是:被减数—减数= ;
差+减数= 。
2、请你与同桌伙伴一起探究、交流:
要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是 ;也就是3―(―2)=5;
再看看,3+2= ;所以3―(―2) 3+2;
由上你有什么发现?请写出来 .
3、换两个式子计算一下,看看上面的结论还成立吗?
—1—(—3)= , —1+3= ,所以—1—(—3) —1+3;
0—(—3)= , 0+3= ,所以0—(—3) 0+3;
4、师生归纳
1)法则:
2)字母表示:
三、新知应用
1、例题
计算:
(1) (-3)―(―5); (2)0-7;
(3) 7.2―(―4.8); (4)-3;
请同学们先尝试解决

【课堂练习】课本 P23 1.2
【要点归纳】:
有理数减法法则:
【拓展训练】
1、计算:
(1)(-37)-(-47); (2)(-53)-16;
(3)(-210)-87; (4)1.3-(-2.7);

(5)(-2)-(-1);

2.分别求出数轴上下列两点间的距离:
(1)表示数8的点与表示数3的点;
(2)表示数-2的点与表示数-3的点;
【总结反思】:
课题:1.3.2 有理数的减法(2)
【学习目标】:
1、理解加减法统一成加法运算的意义;
2、会将有理数的加减混合运算转化为有理数的加法运算;
【重点难点】:有理数加减法统一成加法运算;
【导学指导】
一、知识链接
1、一架飞机作特技表演,起飞后的高度变化如下表:
高度的变化
上升4.5千米
下降3.2千米
上升1.1千米
下降1.4千米
记作
+4.5千米
—3.2千米
+1.1千米
—1.4千米
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。
2、你是怎么算出来的,方法是
二、自主探究
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。
3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为     .再把加号记在脑子里,省略不写
如:(-20)+(+3)-(-5)-(+7) 有加法也有减法
=(-20)+(+3)+(+5)+(-7) 先把减法转化为加法
= -20+3+5-7 再把加号记在脑子里,省略不写
可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”.
4、师生完整写出解题过程
5、补充例题:计算-4.4-(-4)-(+2)+(-2)+12.4;
【课堂练习】
计算:(课本P24练习)
(1)1—4+3—0.5;
(2)-2.4+3.5—4.6+3.5 ;
(3)(—7)—(+5)+(—4)—(—10);


(4);

【要点归纳】:
【拓展训练】:
1、计算:
1)27—18+(—7)—32 2)
【总结反思】:
课题:1.4.1有理数的乘法(1)
【学习目标】:
1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;
2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;
【重点难点】:有理数乘法法则
【导学指导】
一、温故知新
1.有理数加法法则内容是什么?
2.计算
(1)2+2+2= (2)(-2)+(-2)+(-2)=
3.你能将上面两个算式写成乘法算式吗?
二、自主探究
1、自学课本28-29页回答下列问题
(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?
可以表示为 .
( 2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?
可以表示为
(3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?
可以表示为
(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?
可以表示为
由上可知:
(1) 2×3 = ; (2)(-2)×3 = ;
(3)(+2)×(-3)= ; (4)(-2)×(-3)= ;
(5)两个数相乘,一个数是0时,结果为0

观察上面的式子, 你有什么发现?能说出有理数乘法法则吗?
归纳有理数乘法法则
两数相乘,同号 ,异号 ,并把 相乘。
任何数与0相乘,都得 。
2、直接说出下列两数相乘所得积的符号
1)5×(—3) ; 2)(—4)×6 ;
3)(—7)×(—9); 4)0.9×8 ;
3、请同学们自己完成
例1 计算:(1)(-3)×9; (2)(-)×(-2);
归纳: 的两个数互为倒数。
例2

【课堂练习】
课本30页练习1.2.3(直接做在课本上)
【要点归纳】:
有理数乘法法则:
【拓展训练】
1.如果ab>0,a+b>0,确定a、b的正负。
2.对于有理数a、b定义一种运算:a*b=2a-b,计算(-2)*3+1
【总结反思】:
课题:1.4.1有理数的乘法(2)
【学习目标】:
1、经历探索多个有理数相乘的符号确定法则;
2、会进行有理数的乘法运算;
3、通过对问题的探索,培养观察、分析和概括的能力;
【学习重点】:多个有理数乘法运算符号的确定;
【学习难点】:正确进行多个有理数的乘法运算;
【导学指导】
一、温故知新
1、有理数乘法法则:
二、自主探究
1、 观察:下列各式的积是正的还是负的?
2×3×4×(-5),
2×3×(-4)×(-5),
2×(-3)× (-4)×(-5),
(-2) ×(-3) ×(-4) ×(-5);

思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
分组讨论交流,再用自己的语言表达所发现的规律:
几个不是0的数相乘,负因数的个数是 时,积是正数;
负因数的个数是 时,积是负数。
2、新知应用
1、例题3,(P31页)
请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?

你能看出下列式子的结果吗?如果能,理由
7.8×(-8.1)×O× (-19.6)
师生小结:
【课堂练习】
计算:(课本P32练习)
(1)、—5×8×(—7)×(—0.25); (2)、;
(3);
【要点归纳】:
1.几个不是0的数相乘,负因数的个数是 时,积是正数;
负因数的个数是 时,积是负数。
2.几个数相乘,如果其中有一个因数为0,积等于0;
【拓展训练】:
一、选择
1.若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定 B.由正因数的个数决定
C.由负因数的个数决定 D.由负因数和正因数个数的差为决定
2.下列运算结果为负值的是( )
A.(-7)×(-6) B.(-6)+(-4) C. 0×(-2)(-3) D.(-7)-(-15)
3.下列运算错误的是( )
A.(-2)×(-3)=6 B.
C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24
二、计算:
1、 ;
2、 ;
【总结反思】:
1.4.1课题:有理数的乘法(3)
【学习目标】:
1、熟练有理数的乘法运算并能用乘法运算律简化运算;
2、学生通过观察、思考、探究、讨论,主动地进行学习;
【学习重点】:正确运用运算律,使运算简化
【学习难点】:运用运算律,使运算简化
【导学指导】
一、知识链接
1、请同学们计算.并比较它们的结果:
(1) (-6)×5= 5×(-6)=
(2) [3×(-4)]×(-5)= 3×[(-4)×(-5)]=
请以小组为单位,相互检查,看计算对了吗?
二、自主探究
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结
乘法交换律:两个数相乘,交换因数的位置,积 。
即:ab=
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积
即:(ab)c=
4、新知应用
例题4
用两种方法计算 (+-)×12 ;
解法一: 解法二:
【课堂练习】:
(课本P33练习)
1、(-85)×(-25)×(-4); 2、(-)×15×(-1);
3、()×30;
【要点归纳】:
【拓展训练】:
1、看谁算得快,算得准
(1)(-7)×(-)× ; (2) 9 ×18;
(3)-9×(-11)+12×(-9); (4);
【总结反思】:
课题:1.4.2有理数的除法(1)
【学习目标】:
1、理解除法是乘法的逆运算;
2、理解倒数概念,会求有理数的倒数;
3、掌握除法法则,会进行有理数的除法运算;
【重点难点】:有理数的除法法则
【导学指导】
一、知识链接
1)、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有 米,列出的算式为 。
2)放学时,小红仍然以每分钟50米的速度回家,应该走 分钟。
列出的算式为
从上面这个例子你可以发现,有理数除法与乘法之间的关系是
3)写出下列各数的倒数
-4 的倒数 ,3的倒数 ,-2的倒数 ;
二、合作交流、探究新知
1、小组合作完成
比较大小:8÷(-4) 8×(一);
(-15)÷3 (-15)×;
(一1)÷(一2) (-1)×(一);
再相互交流、并与小学里学习的乘除方法进行类比与对比,
归纳有理数的除法法则:
1)、除以一个不等于0的数,等于 ;
2)、两数相除,同号得 ,异号得 ,并把绝对值相 ,0除以任何一个不等于0的数,都得 ;
1.自学P34例5、例6
师生共同完成例7
【课堂练习】
1、练习:P35
2、练习: P36第1、2题

【要点归纳】:
有理数的除法法则:
【拓展训练】
1、计算
(1) ;
(2) 0÷(-1000);
(3) 375÷;
2、练习册P21(-)
【总结反思】:
课题:1.4.2有理数的除法(2)
【学习目标】:
1、学会用计算器进行有理数的除法运算;
2、掌握有理数的混合运算顺序;
【学习重点】:有理数的混合运算;
【学习难点】:运算顺序的确定与性质符号的处理;
【导学指导】
一、知识链接
1、计算
(1) (-8)÷(-4);
(2) (-9)÷3 ;
(3) (—0.1)÷×(—100);
2. 有理数的除法法则:
二、自主探究
1.例8 计算
(1)(—8)+4÷(-2) (2)(-7)×(-5)—90÷(-15)
你的计算方法是先算 法,再算 法。
有理数加减乘除的混合运算顺序应该是
写出解答过程
2.自学完成例9(阅读课本P36—P37页内容)
【课堂练习】
1、计算(P36练习)
(1)6—(—12)÷(—3); ( 2)3×(—4)+(—28)÷7;
(3)(—48)÷8—(—25)×(—6); ( 4);
2.P37练习
【要点归纳】:
【拓展训练】
1、选择题
(1)下列运算有错误的是( )
A.÷(-3)=3×(-3) B.
C.8-(-2)=8+2 D.2-7=(+2)+(-7)
(2)下列运算正确的是( )
A. ; B.0-2=-2; C.; D.(-2)÷(-4)=2;
2、计算
1)、18—6÷(—2)× ; 2)11+(—22)—3×(—11);
【总结反思】:
课题:1.5.1有理数的乘方(1)
【学习目标】:
1、理解有理数乘方的意义;
2、掌握有理数乘方运算;
3、经历探索有理数乘方的运算,获得解决问题经验;
【重点难点】:有理数乘方的运算。
【导学指导】
一、知识链接
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包      。
2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合   次后,就可以拉出32根面条.
二、合作探究
1、分小组合作学习P41页内容,然后再完成好下面的问题
1)                 叫乘方,         叫做幂,在式子an中 ,a叫做   ,n叫做   
2)式子an表示的意义是                 
3)从运算上看式子an,可以读作            ,从结果上看式子an,可以读作                ;
2、新知应用
1、将下列各式写成乘方(即幂)的形式:
(1)(-2)×(-2)×(-2)×(-2)=      .
(2)、(—)×(—)×(—)×(—)=        ;
(3)?????……?(2010个)=       
2、例题,P41例1师生共同完成
从例题1 可以得出:
负数的奇次幂是 数,负数的偶次幂是 数,
正数的任何次幂都是 数,0的任何正整次幂都是 ;
3、思考:(—2)4和—24意义一样吗?为什么?
4、自学例2 (教师指导)
【课堂练习】完成P42页1,2.
【要点归纳】:
【拓展训练】
1、我们已经学习了五种运算,请把下表补充完整:
运算




乘方
运算结果

2、用乘方的意义计算下列各式:
(1);
(2) ; (3);
3.计算
(1) ; (2) ;
【总结反思】:
课题:1.5.1有理数的乘方(2)
【学习目标】:
1、能确定有理数加、减、乘、除、乘方混合运算的顺序;
2、会进行有理数的混合运算;
3、培养并提高正确迅速的运算能力;
【学习重点】:运算顺序的确定和性质符号的处理;
【学习难点】:有理数的混合运算;
【导学指导】
一、知识链接
1、在2+×(-6)这个式子中,存在着 种运算。
2、请你们以4人一个小组讨论、交流,上面这个式子应该先算 、再算
、最后算 。
二、合作探究
1、由上可以知道,在有理数的混合运算中,运算顺序是:
(1)______________________________________________________;
(2)___________________________________________________________;
(3)____________________________________________________________;
2、P43例题3,请你试练
3、师生共同探讨P43例题4
【课堂练习】
P44练习
计算:
(1)、(—1)10×2+(—2)3÷4;
(2)、(—5)3—3×;
(3)、;
(4)、(—10)4+[(—4)2—(3+32)×2];
【要点归纳】:
有理数的混合运算的运算顺序是:
【拓展训练】
计算
1、
2、
【总结反思】:
课题:1.5.2科学记数法
【学习目标】:
1.能将一个有理数用科学记数法表示;
2. 已知用科学记数法表示的数,写出原来的数;
3.懂得用科学记数法表示数的好处;
【重点难点】:用科学记数法表示较大的数
【导学指导】
一、知识链接
1、根据乘方的意义,填写下表:
10的乘方
表示的意义
运算结果
结果中的0的个数
102
10×10
100
2
103
?
?
?
104
?
?
?
105
?
?
?
二、自主学习
1.我们知道:光的速度约为:300000000米/秒,地球表面积约为:510000000000000平方米。这些数非常大,写起来表较麻烦,能否用一个比较简单的方法来表示这两个数吗?
300 000 000=
5100 000 000 000=
定义:把一个大于10的数表示成a×10n的形式(其中a_________________
n是____________)叫做科学记数法。
2.例5.用科学记数法表示下列各数:
(1)1 000 000= (2)57 000 000=
(3)1 23 000 000 000= (4)800800=
(5)-10000= ( 6)-12030000=

归纳:用科学记数法表示一个n位整数时,10的指数比原来的整数位______

【课堂练习】
1.课本45页练习1 、2题
2.写出下列用科学记数法表示的原数:
(1)8.848×103= (2)3.021×102=
(3)3×106= (4)7.5×105=
【要点归纳】:

【拓展训练】
1.用科学记数法表示下列各数:
(1)465000= (2)1200万=
(3)1000.001= (4)-789=
(5)308×106= (6)0.7805×1010=

【总结反思】:
课题:1.5.3近似数
【学习目标】:1.了解近似数和有效数字的概念,能按要求取近似数和保留有效数字;
2.体会近似数的意义及在生活中的应用;
【学习重点】:能按要求取近似数和有效数字;
【学习难点】:有效数字概念的理解。
【导学指导】
一、知识链接
1.用科学记数法表示下列各数:
(1)1250000000= ;(2)-130000= ;(3)-1025000= ;
2.下列用科学记数法表示的数,把原数写在横线上:
(1) ;(2) ;
二.自主学习
1.(1)我们班有 名学生, 名男生, 名女生;
(2)一天有 小时,一小时有 分,一分钟有 秒;
(3)我的体重约为 千克,我的身高约为 厘米;
(4)我国大约有 亿人口.
在上题中,第 题中的数字是准确的,第 题中的数字是与实际接近的。这种只是接近实际数字,但与实际数字还有差别的数被称为近似数。
2.你还能举出生活中的准确数与近似数吗?请将你举的例子写在下面的空白处。
3.近似数与准确数的接近程度,可以用精确度表示(也就是按四舍五入保留小数)。
按四舍五入对圆周率取近似数时,有:
(精确到个位),
(精确到 0.1 ,或叫精确到十分位),
(精确到 ,或叫精确到 位),
(精确到 ,或叫精确到 位),
(精确到 ,或叫精确到 位)。
……
4.例6按括号内的要求,用四舍五入法对下列各数取近似数:
(1)0.0158(精确到0.001); (2)304.35(精确到个位);
(3)1.804(精确到0.1); (4)1.804(精确到0.01);
解:(1) (2)
(3) (4)
思考:1.8,与1.80的精确度相同吗?在表示近似数时,能将小数点后的0随便去掉吗?
从一个数的左边__________________, 到__________________止,所有的数字都是这个数的有效数字。
【课堂练习】
P46练习
用四舍五入法对它们取近似数,并写出各近似数数的有效数字
(1)0.00356(精确到万分位); (2)61.235(精确到个位);
(3)1.8935(精确到0.001); (4)0.0571(精确到0.1);
【要点归纳】:
【拓展训练】
1.按括号内要求,用四舍五入法对下列各数取近似数:
(1)0.00356(精确到0.0001); (2)566.1235(精确到个位);
(3)3.8963(精确到0.1); (4)0.0571(精确到千分位);
(5)0.2904(保留两个有效数字); (6)0.2904(保留3个有效数字);
2.(1)0.3649精确到 位,有 个有效数字,分别是 ;
(2)2.36万精确到 位,有 个有效数字,分别是 ;
(3)5.7×105精确到 位,有 个有效数字,分别是 __;
【总结反思】:
课题:第一章 有理数复习(两课时)
【复习目标】:复习整理有理数有关概念和有理数的运算法则,运算律以及近似计算等有关知识;
【复习重点】:有理数概念和有理数的运算;
【复习难点】:对有理数的运算法则的理解;
【导学指导】:
一、知识回顾
(一)正负数 有理数的分类:
_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
(二)数轴 规定了 、 、 的直线,叫数轴
(三)、相反数的概念
像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数;
0的相反数是 。一般地:若a为任一有理数,则a的相反数为-a
相反数的相关性质:
1、相反数的几何意义:
表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。
2、互为相反数的两个数,和为0。
(四)、绝对值
一般地,数轴上表示数a的点与原点的 叫做数a的绝对值,记作∣a∣;
一个正数的绝对值是 ;
一个负数的绝对值是它的 ;
0的绝对值是 .
任一个有理数a的绝对值用式子表示就是:
(1)当a是正数(即a>0)时,∣a∣= ;
(2)当a是负数(即a<0)时,∣a∣= ;
(3)当a=0时,∣a∣= ;
【课堂练习】
1.把下列各数填在相应额大括号内:
1,-0.1,-789,25,0,-20,-3.14,-590,
正整数集{ …};正有理数集{ …};
负有理数集{ …};
负整数集{ …};自然数集{ …};
正分数集{ …};
负分数集{ …};
2.如图所示的图形为四位同学画的数轴,其中正确的是( )
3.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 0
4.下列语句中正确的是( )
A.数轴上的点只能表示整数 
B.数轴上的点只能表示分数 
C.数轴上的点只能表示有理数 
D.所有有理数都可以用数轴上的点表示出来
5. -5的相反数是 ;-(-8)的相反数是 ;- [+(-6)]=
0的相反数是 ; a的相反数是 ;
6. 若a和b是互为相反数,则a+b= 。
7.如果-x=-6,那么x=______;-x=9,那么x=_____
8. |-8|= ; -|-5|= ; 绝对值等于4的数是_______。
9.如果,则,
10.有理数中,最大的负整数是 ,最小的正整数是 ,最大的非正数是 。 
【要点归纳】:
【拓展训练】:
1.绝对值等于其相反数的数一定是( )
A.负数B.正数 C.负数或零D.正数或零
2. 已知a、b都是有理数,且|a|=a,|b|=-b、,则ab是(? ? )
A.负数;?????? B.正数;?????????? C.负数或零;??????????? D.非负数
3.,则; ,则
4.如果,则的取值范围是( )
A.>O B.≥O C.≤O D.<O.
5.绝对值不大于11的整数有( )
A.11个 B.12个 C.22个 D.23个
【总结反思】:
一.知识回顾
(五)、有理数的运算
(1)有理数加法法则:
(2)有理数减法法则:
(3)有理数乘法法则:
(4)有理数除法法则:
(5)有理数的乘方:
求      的积的运算,叫做有理数的乘方。
即:an=aa…a(有n个a)
从运算上看式子an,可以读作       ;从结果上看式子an可以读作      .
有理数混合运算顺序:
(1)
(2)
(3)
(六)、科学记数法、近似数及有效数字
(1)把一个大于10的数记成a ×10n的形式(其中a是整数数位只有一位的数),叫做科学记数法.
(2)对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
【课堂练习】:
1. 33= ;()2= ;-52= ;22的平方是 ;
2.下列各式正确的是( )
A. B.
C. D.
3.计算:
(1)12-(-18)+(-7)-15 (2)
(3)(-1)10×2+(-2)3÷4 (4)(-10)4+[(-4)2-(3+32)×2]
4.用科学记数数表示:1305000000= ;-1020= 。
5. 120万用科学记数法应写成 ;2.4万的原数是 。
6. 近似数3.5万精确到 位,有 个有效数字.
7.近似数0.4062精确到 位,有 个有效数字.
8. 5.47×105精确到 位,有 个有效数字
【要点归纳】:
【拓展训练】:
1. 3.4030×105保留两个有效数字是 ,精确到千位是 。
2.用四舍五入法求30951的近似值(要求保留三个有效数字),结果是 。
3.已知=3,=4,且,求的值。
4.下列说法正确的是( )
A.如果,那么 B.如果,那么
C.如果,那么 D.如果,那么
5.计算:
(1)
(2)
【总结反思】:
第一章 有理数检测试卷(满分100分)
班级___________姓名_____________分数_____________
一、选择题(每题4分,共32分)
下列说法正确的个数是 ( )
①一个有理数不是整数就是分数   ②一个有理数不是正数就是负数
③一个整数不是正的,就是负的   ④一个分数不是正的,就是负的
A. 1 B. 2 C. 3 D. 4
下列说法正确的是 ( )
①0是绝对值最小的有理数     ②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数  ④两个数比较,绝对值大的反而小
A.①② B①③ C ①②③ D ①②③④
下列运算正确的是 ( )
A. B.(-7-2)×5=-9×5=-45
C. D.
某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )
A. 0.8kg B 0.6kg C 0.5kg D 0.4kg
5.2008北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示为( )
A. B. C. D.
6.数轴上的两点A、B分别表示-6和-3,那么A、B两点间的距离是 ( )
A.-6+(-3) B.-6-(-3) C.|-6+(-3)| D.|-3-(-6)|
7.在数-5.745,-5.75,-5.738,-5.805,-5.794,-5.845这6个数中精确到十分位得-5.8的数共有( )
A.2个 B.3个 C.4个 D.5个
8.、、的大小关系为( )
A.<<; B.<<;C.<<; D.<<;
二、填空题(每题4分,共24分)
1.比大而比小的所有整数的和为 。
2.若0<a<1,则,,的大小关系是 。
3.多伦多与北京的时间差为 –12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是 。
4.已知a=25,b= -3,则a99+b100的末位数字是 。
的相反数是_______,的绝对值是_________。
若,则=_________
三、计算题(每题7分,共14分)
1、1?; 2、? ;
四、解答题(共30分)
1.(6分)一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):
+5,-3,+10,-8,-6,+12,-10;
(1)守门员是否回到了原来的位置?
(2)守门员离开球门的位置最远是多少?
(3)守门员一共走了多少路程?
2.(7分)已知a与b互为相反数,c与d互为倒数,求的值;
3.(7分)观察下列等式
-1,,-,,-,……
填出第7,8,9三个数; , , ;
第2010个数是什么?如果这一列数无限排列下去,与哪个数越来越接近?
4.(10分) 如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求
的值。
第二章 整式的加减
课题:2.1单项式
【学习目标】:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
【学习重点】:掌握单项式及单项式的系数、次数的概念。
【学习难点】:区别单项式的系数和次数
【导学指导】:
一.知识链接:
1.列代数式
(1)若边长为a的正方体的表面积为________,体积为 ;
(2)铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,圆珠笔的单价是 元;
(3) 一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;
(4) 设n是一个数,则它的相反数是________.
2.请学生说出所列代数式的意义。
3.请学生观察所列代数式包含哪些运算,有何共同运算特征。
(由小组讨论后,经小组推荐人员回答)
二、自主学习:
1.单项式:
通过上述特征的描述,从而概括单项式的概念,:
单项式:即由_________与______的乘积组成的代数式称为单项式。
补充: 单独_________或___________也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1); (2)abc; (3)b2; (4)-5ab2; (5)y+x; (6)-xy2; (7)-5。
解:是单项式的有(填序号):________________________
3.单项式系数和次数:
四个单项式a2h,2πr,abc,-m中,请说出它们的数字因数和字母因数分别是什么?
单项式
a2h
2πr
abc
-m
数字因数
字母因数
小结:一个单项式中,单项式中的数字因数称为这个单项式的________一个单项式中,_____________的指数的和叫做这个单项式的次数
4.学生阅读课本55页,完成例1
【课堂练习】:
1.课本p56:1,2。
2.判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1; ②; ③πr2; ④-a2b。
答:

3.下面各题的判断是否正确?
①-7xy2的系数是7;( ) ②-x2y3与x3没有系数;( )
③-ab3c2的次数是0+8+2;( ) ④-a3的系数是-1;( )
⑤-32x2y3的次数是7;( ) ⑥πr2h的系数是。( )
【要点归纳】:
1. 单项式:
2. 单项式系数和次数:
3.通过例题及练习,应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1” 通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关
【拓展训练】:
1、 ,x+1, -2,, 0.72xy,各式中单项式的个数是( )
A. 2个   B.3个 C.4个 D.5个
2、单项式-x2yz2的系数、次数分别是( )
A. 0,2 B. 0, 4 . C. -1,5 D.1,4
【总结反思】:
课题:2.1 多项式
【学习目标】:
1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。
2.能确定一个多项式的项数及其次数。
【学习重点】:多项式的定义、多项式的项和次数,以及常数项等概念。
【学习难点】:多项式的次数。
【导学指导】:
一、温故知新:
1.下列说法或书写是否正确:
  ①1x ②-1x ③a×3 ④a÷2 ⑤
⑥b的系数为1,次数为0 ⑦ 的系数为2,次数为2
2.列代数式:
(1)长方形的长与宽分别为a、b,则长方形的周长是 ;
(2)某班有男生x人,女生21人,则这个班共有学生 人;
(3)一个数比数x的2倍小3,则这个数为_________;
(4)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。
2.观察以上所得出的四个代数式与上节课所学单项式有何区别。
(由小组讨论后,经小组推荐人员回答)
二、自主探究:
1.多项式:
学生阅读课本57页完成下列问题:
上面这些代数式都是由几个单项式相加而成的。像这样,_______________的和叫做多项式。在多项式中,每个单项式叫做多项式的___。其中,不含字母的项,叫做_______。
例如,多项式有_____项,它们是______________。其中常数项是________。
一个多项式含有几项,就叫几项式。多项式里________________________,叫做这个多项式的次数。例如,多项式是一个____次______项式。
问题:
(1)多项式的次数是所有项的次数之和吗?
(2)多项式的每一项都包括它前面的符号吗?
2、自学例2、例3(教师指导)
注:__________与___________统称整式。
【课堂练习】:
1.课本59页1、2 (直接做在课本上)
【要点归纳】:
1.你知道多项式的定义、多项式的项和次数,以及常数项等概念了吗?
2. 整式的概念:__________与___________统称整式。
【拓展训练】:

1.下列说法中,正确的是( )
2.下列关于23的次数说法正确的是( )
A. 2次 B. 3次 C. 0次 D. 无法确定
3.-a2b-ab+1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。
4.如果为四次单项式,则m=____;
【总结反思】:
课题:2.2 同类项
【学习目标】:
1.理解同类项的概念,在具体情景中,认识同类项。
2.初步体会数学与人类生活的密切联系。
【学习重点】:理解同类项的概念。
【学习难点】:根据同类项的概念在多项式中找同类项。
【导学指导】:
一.知识链接
1.运用有理数的运算律计算:
(1)100×2+252×2=__________,
(2)100×(-2)+252×(-2)=__________,
(3)100t+252t=__________,
思路点拨:根据逆用乘法对加法的分配律可得。
2.请根据上面得到结论的方法探究下面各式的结果:
(1)100t—252t=( )t
(2)3x2 + 2 x2 = ( ) x2
(3)3ab2 - 4 ab2 = ( ) ab2
上述运算有什么共同特点,你能从中得出什么规律?
二.自主学习
同类项的定义:
1.观察:3x2 和 2 x2 ; 3ab2 与 -4 ab2 在结构上有哪些相同点和不同点?
2.归纳:_______________________________________________叫做同类项
____________________也是同类项。如3和-5是同类项
【课堂练习】:
1、判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。 ( ) (2)2ab与-5ab是同类项。 ( )
(3)3x2y与-yx2是同类项。 ( ) (4)5ab2与-2ab2c是同类项。 ( )
(5)23与32是同类项。 ( )
2、下列各组式子中,是同类项的是( )
A、与 B、与 C、与 D、与
3、在下列各组式子中,不是同类项的一组是( )
A、 2 ,-5 B、 -0.5xy2, 3x2y
C、 -3t,200πt D、 ab2,-b2 a
4、已知xmy2与-5ynx3是同类项,则m= ,n= 。
5、指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2;
6、游戏:
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。要求出题同学尽可能使自己的题目与众不同。请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。
【要点归纳】:
1. 同类项的概念:
2.注意:
两个相同:字母相同;相同字母的指数相等。
两个无关:与系数无关;与字母顺序无关。
所有的常数项都是同类项。
两个项虽然所含字母相同,但相同字母的指数不全相同就不是同类项。
【拓展训练】:
1、若和是同类项,则m=_________,n=___________。
2、若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(1)(s+t)-(s-t)-(s+t)+(s-t); (2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+(s-t)。
3、观察下列一串单项式的特点:
, , , , ,…
(1)按此规律写出第6个单项式.
(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?
【总结反思】:
课题:2.2合并同类项
【学习目标】:理解合并同类项的概念,掌握合并同类项的法则。
【重点难点】:正确合并同类项。
【导学指导】
一、知识链接
1.下列各组式子中是同类项的是( ).
A.-2a与a2 B.2a2b与3ab2 C.5ab2c与-b2ac D.-ab2和4ab2c
2、思考
⑴ 6个人+4个人= ⑵ 6只羊+4只羊= ⑶ 6个人+4只羊=
二.自主探究
1.思考:具备什么特点的多项式可以合并呢?
2.因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,
4x2+2x+7+3x-8x2-2 (找出多项式中的同类项)
= (交换律)
= (结合律)
= (分配律)
=
把多项式中的同类项合并成一项,叫做合并同类项.
3. 合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?
归纳:
(1)合并同类项法则:
在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变。
(2) 若两个同类项的系数互为相反数,则两项的和等于零,
如-3ab2+3ab2=(-3+3)ab2=0·ab2=0。

多项式中只有同类项才能合并,不是同类项不能合并。
例1.合并下列各式的同类项:
(1)xy2-xy2; (2)-3x2y+2x2y+3xy2-2xy2; (3)4a2+3b2+2ab-4a2-4b2
解:

例2.(1)求多项式2x2-5x+x2 +4x-3x2 - 2的值,其中x=。
(2)求多项式3a+abc-c2-3a+c2的值,其中a=-,b=2,c=-3。
解:(1)2x2-5x+x2+4x-3x2-2 (仔细观察,标出同类项)解:(2)3a+abc-3a
例3(学生自学)
【课堂练习】
1.下列各题合并同类项的结果对不对?若不对,请改正。
(1)2x2+3x2=5x4; (2)3x+2y=5xy; (3)7x2-3x2=4; (4)9a2b-9ba2=0。
2.课本P66页,练习第1、2、3题.
( 教师巡视,关注中下程度的学生,适时给予指导,学生独立练习,选择中等程度的学生上黑板演算)。
【要点归纳】:
1. 什么叫合并同类项?
2.怎样合并同类项?
3.合并同类项的依据是什么?
【拓展训练】:

1.求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3。
2.求多项式a2b-6ab-3a2b+5ab+2a2b的值,其中a=0.1,b=0.01;
【总结反思】:
课题:2.2 去括号
【学习目标】:能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
【学习重点】去括号法则,准确应用法则将整式化简。
【学习难点】:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
【导学指导】
一、温故知新:
1.合并同类项:
(1) (2) (3) (4)
二、自主探究
1. 利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为 100t+120(t-0.5)千米 ①
冻土地段与非冻土地段相差 100t-120(t-0.5)千米 ②
上面的式子①、②都带有括号,它们应如何化简?
100t+120(t-0.5)=100t+ =
100t-120(t-0.5)=100t =
我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:
+120(t-0.5)= ③ -120(t-0.5)= ④
比较③、④两式,你能发现去括号时符号变化的规律吗?
归纳去括号的法则:
法则1: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
法则2: 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3);
2.范例学习
例4.化简下列各式:
(1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b)?