22.3 实际问题与二次函数
— 月考热身 —
一、选择题
1、[2021青县·月考]如图,水从山坡下水管的小孔喷出,喷洒到山坡上,已知山坡AB:OB=1:2,若把小孔处设为原点,喷出的水柱的路线近似地用函数y=﹣x2+4x来刻画,下列结论错误的是( )
A.山坡可以用正比例函数y=x来刻画
B.若水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米或7.5米
C.水柱落到斜面时距O点的水平距离为7米
D.水柱距O点水平距离超过4米呈下降趋势
2、[2022垦利区·月考]当﹣1≤x≤3时,二次函数y=(x+m)2+m+1有最大值5,则m的值为( )
A.或 B.或﹣
C.或 D.或﹣
3、[2022东宝区·德艺学校月考]已知抛物线y=ax2+bx+c(a,b,c是常数,且a≠0)与x轴相交于点A,B(点A在点B左侧),点A(﹣1,0),与y轴交于点C(0,c),其中2≤c≤3.对称轴为直线x=1,现有如下结论:①2a+b=0;②当x≥3时,y<0;③这个二次函数的最大值的最小值为;④﹣1≤a≤﹣,其中正确结论的个数有( )个
A.4 B.3 C.2 D.1
4、[2022江都区·月考]若实数x、y满足2x2﹣6x+y=0,则x2+y+2x的最大值是( )
A.14 B.15 C.16 D.17
5、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x,第3年的销售量为y台,则y关于x的函数解析式为( )
A.y=5000(1+2x) B.y=5000(1+x)2
C.y=5000+2x D.y=5000x2
6、某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为( )
A.9m B.10m C.11m D.12m
二、填空题
7、[2022绿园区·汽开九中月考]在平面直角坐标系中,已知二次函数y=x2+mx+2m(m为常数,m<0),若对于任意的x满足m≤x≤m+2,且此时x所对应的函数值的最小值为12,则m= .
8、[2022宜兴市·月考]如图,矩形ABCD中,AB=2cm,AD=5cm,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s).连接PC,以PC为一边作正方形PCEF,连接DE、DF,则△DEF面积最小值为 .
9、[2022洪山区·月考]如图,在矩形ABCD中,AD=3,点E是AD边上的动点,连结CE,以CE为边向右上方作正方形CEFG,过点F作FH⊥AD,垂足为H,连结AF.在整个变化过程中,△AEF面积的最大值是 .
10、[2022江都区·月考]若定义一种新运算:a b=,例如:4 1=4×1=4;5 4=10﹣4﹣2=4.则函数y=(﹣x+3) (x+1)的最大值是 .
11、[2022江西·月考]二次函数y=﹣(x﹣2)2+3的最大值是 .
12、[2022江夏区·华一寄宿学校月考]二次函数y=ax2+bx+c(a≠0)与x轴交点的横坐标分别为x1,x2(x1≠x2).下列结论:①若x1=2,x2=﹣4,则方程ax2+bx+c=0的根是x1=2,x2=﹣4.②若二次函数对称轴为直线x=1,则ab>0.③若x2=2x1,则4b﹣9ac的最大值是2.其中正确的结论是 .
13、一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=﹣,当水面离桥拱顶的高度OC是4m时,水面的宽度AB为 m.
14、若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是 .
三、解答题
15、[2022江夏区·月考]某公园要修建一个圆形喷水池,在池中心竖直安装一根水管,水管OA长2.25m.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m.
(1)建立如图所示平面直角坐标系,求抛物线(第一象限部分)的解析式;
(2)不考虑其它因素,水池的直径至少要多少米才能使喷出的水流不落到池外?
(3)实际施工时,经测量,水池的最大半径只有2.5m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.
16、如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.
(1)求线段CE的函数表达式(写出x的取值范围).
(2)当a=时,着陆点为P,求P的横坐标并判断成绩是否达标.
(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.
①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.
②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:≈1.73,≈2.24)
17、某水果经销商以19元/千克的价格新进一批芒果进行销售,因为芒果不耐储存,在运输储存过程损耗率为5%.为了得到日销售量y(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:
销售价格x(元/千克) 20 25 30 35 40
日销售量y(千克) 400 300 200 100 0
(1)这批芒果的实际成本为 元千克;[实际成本=进价÷(1﹣损耗率)]
(2)①请你根据表中的数据直接出写出y与x之间的函数表达式,标出x的取值范围;
②该水果经销商应该如何确定这批芒果的销售价格,才能使日销售利润W1最大?
(3)该水果经销商参与电商平台助农活动,开展网上直销,可以完全避免运输储存过程中的损耗成本,但每销售1千克芒果需支出a元(a>0)的相关费用,销售量与销售价格之间关系不变.当25≤x≤29,该水果经销商日获利W2的最大值为2090元,求a的值.
18、如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.
(1)求抛物线的解析式及点A、B的坐标;
(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.
19、如图,在某中学的一场篮球赛中,小明在距离篮圈中心7.3m(水平距离)远处跳起投篮,已知球出手时离地面m,当篮球运行的水平距离为4m时达到离地面的最大高度4m.已知篮球在空中的运行路线为一条抛物线,篮圈中心距地面3m.
(1)建立如图的平面直角坐标系,求篮球运行路线所在抛物线的函数表达式;
(2)场边看球的小丽认为:小明投出的此球不能命中篮圈中心.
①请通过计算说明小丽判断的正确性;
②若球出手的角度和力度都不变,小明应该向前走或向后退多少米才能命中篮圈中心?
(3)在球出手后,未达到最高点时,被防守队员拦截下来称为盖帽,但球到达最高点后,处于下落过程时,防守队员再出手拦截,属于犯规.在(1)的条件下,防守方球员小亮前来盖帽,已知小亮的最大摸球高度为3.19m,则他应在小明前面多少米范围处跳起拦截才能盖帽成功?
20、为巩固“脱贫攻坚”成果,某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8<x≤32)成一次函数关系,如表列出了x与y的一些对应值:
x 16 24 32
y 168 144 120
(1)根据表中信息,求y与x的函数关系式;
(2)若五一期间销售草莓获取的利润为w(元),请写出w与x之间函数表达式,并求出销售单价为多少时,获得的利润最大?最大利润是多少?(利润=销售额﹣成本)
21、某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.
(1)图中点P所表示的实际意义是 ,每增种1棵果树时,每棵果树平均产量减少 kg;
(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?
22、如图,抛物线y=ax2+bx+c与x轴交于点A,B,与y轴交于点C,一次函数y=﹣x+3的图象经过点B,C,与抛物线对称轴交于点D,且S△ABD=4,点P是抛物线y=ax2+bx+c上的动点.
(1)求抛物线的函数解析式.
(2)当点P在直线BC上方时,求点P到直线BC的距离的最大值.22.3 实际问题与二次函数
— 月考热身 —
> > > 精品解析 < < <
一、选择题
1、[2021青县·月考]如图,水从山坡下水管的小孔喷出,喷洒到山坡上,已知山坡AB:OB=1:2,若把小孔处设为原点,喷出的水柱的路线近似地用函数y=﹣x2+4x来刻画,下列结论错误的是( )
A.山坡可以用正比例函数y=x来刻画
B.若水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米或7.5米
C.水柱落到斜面时距O点的水平距离为7米
D.水柱距O点水平距离超过4米呈下降趋势
[思路分析]根据AB:OB=1:2,得到=,于是得到山坡可以用正比例函数y=x来刻画;故A选项正确;根据二次函数的性质求出对称轴,根据二次函数性质判断B错误;求出抛物线与直线的交点,判断C正确,根据抛物线的性质D正确.
[答案详解]解:A、∵∠ABO=90°,AB:OB=1:2,
∴=,
∴山坡可以用正比例函数y=x来刻画;故A选项正确;
B、当y=1.875时,1.875=﹣x2+4x,
解得,x1=7.5,x2=,
∴水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米,故B选项错误;
解方程组,
得:或,
则水柱落到斜面时距O点的水平距离为7米,故C选项正确;
∵y=4x﹣x2
=﹣(x﹣4)2+8,
则抛物线的对称轴为x=4,
∴当x>4时,y随x的增大而减小,
即小球距O点水平距离超过4米呈下降趋势,故D正确.
故选:B.
[经验总结]本题考查的是二次函数的应用和直线与抛物线的交点,掌握二次函数的性质是解题的关键.
2、[2022垦利区·月考]当﹣1≤x≤3时,二次函数y=(x+m)2+m+1有最大值5,则m的值为( )
A.或 B.或﹣
C.或 D.或﹣
[思路分析]分类讨论,①对称轴在x=1左侧,②对称轴在x=1右侧,求得m的值,即可解题.
[答案详解]解:∵二次函数y=(x+m)2+m+1,
∴抛物线开口向上,对称轴为直线x=﹣m,
①当对称轴x=﹣m≤1时,x=3,二次函数有最大值,此时m≥﹣1,
代入x=3得:m2+6m+9+m+1=5,
化简得:m2+7m+5=0,
解得:m=,或m=(舍去);
②当对称轴x=﹣m≥1时,x=﹣1,二次函数有最大值,此时m≤﹣1,
代入x=﹣1得:m2﹣2m+1+m+1=5,
化简得:m2﹣m﹣3=0,
解得:m=,或m=(舍去);
综上所述,m的值为:或.
故选:C.
[经验总结]本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
3、[2022东宝区·德艺学校月考]已知抛物线y=ax2+bx+c(a,b,c是常数,且a≠0)与x轴相交于点A,B(点A在点B左侧),点A(﹣1,0),与y轴交于点C(0,c),其中2≤c≤3.对称轴为直线x=1,现有如下结论:①2a+b=0;②当x≥3时,y<0;③这个二次函数的最大值的最小值为;④﹣1≤a≤﹣,其中正确结论的个数有( )个
A.4 B.3 C.2 D.1
[思路分析]根据二次函数的图象和性质依次判断即可.
[答案详解]解:∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a,
∴2a+b=0,
∴①正确.
∵抛物线过点A(﹣1,0),对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(3,0).
∵抛物线与y轴交于C(0,c),2≤c≤3,
∴a<0,
∴当x≥3时,y≤0,
∴②错误.
∵抛物线过点A(﹣1,0),
∴a﹣b+c=0,
∴a+2a+c=0,
∴a=﹣c.
∵抛物线开口向下,对称轴为直线x=1,
∴当x=1时,y有最大值=a+b+c=﹣c+c+c=c.
∵2≤c≤3,
∴≤≤4.
∴这个二次函数的最大值的最小值为,
∴③正确.
∵a=﹣c,2≤c≤3,
∴﹣1≤a≤﹣,
∴④正确.
故选:B.
[经验总结]本题考查二次函数的图象和性质,正确掌握二次函数的图象和性质是求解本题的关键.
4、[2022江都区·月考]若实数x、y满足2x2﹣6x+y=0,则x2+y+2x的最大值是( )
A.14 B.15 C.16 D.17
[思路分析]由2x2﹣6x+y=0,得y=﹣2x2+6x,代入x2+y+2x即可得到x2+y+2x=x2﹣2x2+6x+2x=﹣(x﹣4)2+16,利用二次函数的性质即可得到结论.
[答案详解]解:由2x2﹣6x+y=0,得y=﹣2x2+6x,
∴x2+y+2x=x2﹣2x2+6x+2x=﹣x2+8x=﹣(x﹣4)2+16,
故当x=4时,x2+y+2x的最大值是16.
故选:C.
[经验总结]此题主要考查了二次函数的最值问题,用含x的代数式代替y,得到关于x的函数解析式是解题的关键.
5、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x,第3年的销售量为y台,则y关于x的函数解析式为( )
A.y=5000(1+2x) B.y=5000(1+x)2
C.y=5000+2x D.y=5000x2
[思路分析]首先表示出第二年的销售量为5000(1+x),然后表示出第三年的销售量为5000(1+x)2,从而确定答案.
[答案详解]解:设每年的销售量比上一年增加相同的百分率x,
根据题意得:y=5000(1+x)2,
故选:B.
[经验总结]本题考查了根据实际问题列二次函数的关系式,解题的关键是分别表示出第二年和第三年的销售量,难度中等.
6、某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为( )
A.9m B.10m C.11m D.12m
[思路分析]设抛物线解析式为y=a(x﹣2)2+k,将点C(0,8)、B(8,0)代入求出a、k的值即可.
[答案详解]解:根据题意,设抛物线解析式为y=a(x﹣2)2+k,
将点C(0,8)、B(8,0)代入,得:
,
解得,
∴抛物线解析式为y=﹣(x﹣2)2+9,
所以当x=2时,y=9,即AD=9m,
故选:A.
[经验总结]本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式.
二、填空题
7、[2022绿园区·汽开九中月考]在平面直角坐标系中,已知二次函数y=x2+mx+2m(m为常数,m<0),若对于任意的x满足m≤x≤m+2,且此时x所对应的函数值的最小值为12,则m= .
[思路分析]将二次函数解析式化为顶点式,由抛物线对称轴与开口方向分类讨论顶点为图象最低点或直线x=m+2与抛物线交点为最低点,进而求解.
[答案详解]解:∵y=x2+mx+2m=(x+)2﹣+2m,
∴抛物线开口向上,顶点坐标为(﹣,﹣+2m),
当m<﹣<m+2时,﹣<m<0,
﹣+2m=12,方程无解.
当m≤﹣时,将x=m+2代入y=x2+mx+2m得y=(m+2)2+m(m+2)+2m=2m2+8m+4,
令2m2+8m+4=12,
解得m=(舍)或m=﹣2﹣2,
故答案为:﹣2﹣2.
[经验总结]本题考查二次函数的性质,解题关键是掌握二次函数与方程的关系.
8、[2022宜兴市·月考]如图,矩形ABCD中,AB=2cm,AD=5cm,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s).连接PC,以PC为一边作正方形PCEF,连接DE、DF,则△DEF面积最小值为 .
[思路分析]由题意得:AP=t,PD=5﹣t,根据三角形面积公式可得△PCD的面积y与t的关系式,由图得:S△DEF+S△PDC=S正方形EFPC,代入可得结论.
[答案详解]解:设△PCD的面积为y,
由题意得:AP=t,PD=5﹣t,
∴y==5﹣t,
∵四边形EFPC是正方形,
∴S△DEF+S△PDC=S正方形EFPC,
∵PC2=PD2+CD2,
∴PC2=22+(5﹣t)2=t2﹣10t+29,
∴S△DEF=(t2﹣10t+29)﹣(5﹣t)=t2﹣4t+=(t﹣4)2+,
当t为4时,△DEF的面积最小,且最小值为.
故答案为:.
[经验总结]本题是四边形的综合题,考查了全等三角形的判定与性质、利用三角形的面积公式求二次函数的解析式,勾股定理的运用,动点运动等知识,考查学生数形结合的能力,分类讨论的能力,综合性强,难度适中.
9、[2022洪山区·月考]如图,在矩形ABCD中,AD=3,点E是AD边上的动点,连结CE,以CE为边向右上方作正方形CEFG,过点F作FH⊥AD,垂足为H,连结AF.在整个变化过程中,△AEF面积的最大值是 .
[思路分析]证明Rt△EFH≌Rt△CED,设AE=a,用含a代数式表示△AEF的面积,进而求解.
[答案详解]解:∠FEH+∠CED=90°,∠FEH+∠EFH=90°,
∴∠CED=∠EFH,
在Rt△EFH和Rt△CED中,
,
∴Rt△EFH≌Rt△CED(AAS),
∴ED=FH,
设AE=a,则ED=FH=3﹣a,
∴S△AEF=AE FH=a(3﹣a)=﹣(a﹣)2+,
∴当AE=时,△AEF面积的最大值为.
故答案为:.
[经验总结]本题考查二次函数的最值问题,解题关键是掌握正方形的性质,掌握全等三角形的判定与性质.
10、[2022江都区·月考]若定义一种新运算:a b=,例如:4 1=4×1=4;5 4=10﹣4﹣2=4.则函数y=(﹣x+3) (x+1)的最大值是 .
[思路分析]根据新运算的定义,对(﹣x+3)和3(x+1)的大小进行比较,列出不同的情况分类讨论,得到不同的函数表达式求出最值即可.
[答案详解]解:由题可得,
①当﹣x+3≥3(x+1)时,
即:x≤0,
y=(﹣x+3)(x+1)=﹣x2+2x+3
=﹣(x﹣1)2+4.
由抛物线性质可得,
当x≤1时,y随x的增大而增大,
∴只有当x=0时,y的最大值为y=3;
②当﹣x+3<3(x+1)时,
即:x>0,
y=2×(﹣x+3)﹣(x+1)﹣2
=﹣3x+3.
∵﹣3<0,
∴y随x的增大而减小,当x=0时,y=﹣3×0+3=3.
∵x>0,
∴y<3,
综上①②得y≤3.
故函数y=(﹣x+3) (x+1)的最大值是3.
[经验总结]本题考查了二次函数的最值以及一次函数的最值,熟练掌握函数最值的求法是解题的关键.
11、[2022江西·月考]二次函数y=﹣(x﹣2)2+3的最大值是 .
[思路分析]由二次函数解析式可得函数最大值为3.
[答案详解]解:∵y=﹣(x﹣2)2+3,
∴x=2时,y取最大值为y=3,
故答案为:3.
[经验总结]本题考查二次函数的最值,解题关键是掌握二次函数与方程的关系.
12、[2022江夏区·华一寄宿学校月考]二次函数y=ax2+bx+c(a≠0)与x轴交点的横坐标分别为x1,x2(x1≠x2).下列结论:①若x1=2,x2=﹣4,则方程ax2+bx+c=0的根是x1=2,x2=﹣4.②若二次函数对称轴为直线x=1,则ab>0.③若x2=2x1,则4b﹣9ac的最大值是2.其中正确的结论是 .
[思路分析]根据二次函数的图象和性质依次判断即可.
[答案详解]解:∵二次函数y=ax2+bx+c(a≠0)与x轴交点的横坐标x1,x2
是对应方程ax2+bx+c=0的根,
∴①正确.
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a,
∴a,b异号,
∴ab<0,
∴②错误.
∵x2=2x1,
∴y=ax2+bx+c=a(x﹣x1)(x﹣2x1)
=ax2﹣3ax1 x+2a,
∴b=﹣3ax1,c=2a,
∴4b﹣9ac=﹣12ax1﹣18a2
=﹣18a2+2,
∵﹣18a2<0,
∴当x1=﹣时,该式有最大值2,
∴③正确.
故答案为:①③.
[经验总结]本题考查二次函数的图象和性质,充分掌握二次函数与方程的关系是求解本题的关键.
13、一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=﹣,当水面离桥拱顶的高度OC是4m时,水面的宽度AB为 m.
[思路分析]根据题意,把y=﹣4直接代入解析式即可解答.
[答案详解]解:根据题意B的纵坐标为﹣4,
把y=﹣4代入y=﹣x2,
得x=±8,
∴A(﹣8,﹣4),B(8,﹣4),
∴AB=16m.
即水面宽度AB为16m.
故答案为:16.
[经验总结]此题考查了二次函数的实际应用,掌握二次函数的对称性是解决问题的关键.
14、若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是 .
[思路分析]由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.
[答案详解]解:由x+y2=3,得:y2=﹣x+3≥0,
∴x≤3,
代入s=x2+8y2得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,
当x=3时,s=(3﹣4)2+8=9,
∴s≥9;
故答案为:s≥9.
[经验总结]此题考查了非负数的性质,用一个未知数表示另一个未知数,二次函数的最值,熟练掌握二次函数的性质是关键.
三、解答题
15、[2022江夏区·月考]某公园要修建一个圆形喷水池,在池中心竖直安装一根水管,水管OA长2.25m.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m.
(1)建立如图所示平面直角坐标系,求抛物线(第一象限部分)的解析式;
(2)不考虑其它因素,水池的直径至少要多少米才能使喷出的水流不落到池外?
(3)实际施工时,经测量,水池的最大半径只有2.5m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.
[思路分析](1)由题意可知,抛物线的顶点坐标为(1,3),设抛物线的解析式为:y=a(x﹣1)2+3,将(0,2.25)代入得,求出a的值即可;
(2)令y=0,得,0=﹣(x﹣1)2+3,解得x=﹣1(舍)或x=3,可得直径至少为2×3=6(米);
(3)将抛物线向下平移,使平移后的抛物线经过点(2.5,0),设平移后的抛物线的解析式为:y=﹣(x﹣1)2+h,将(2.5,0)代入得求出h的值,得出平移后的抛物线的解析式,再令x=0求出y即可.
[答案详解]解:(1)由题意可知,抛物线的顶点坐标为(1,3),
∴设抛物线的解析式为:y=a(x﹣1)2+3,
将(0,2.25)代入得,a(0﹣1)2+3=2.25,
解得a=﹣,
∴抛物线的解析式为:y=﹣(x﹣1)2+3.
(2)令y=0,得,0=﹣(x﹣1)2+3,
解得x=﹣1(舍)或x=3,
∵2×3=6(米),
∴水池的直径至少要6米才能使喷出的水流不落到池外.
(3)将抛物线向下平移,使平移后的抛物线经过点(2.5,0),
设平移后的抛物线的解析式为:y=﹣(x﹣1)2+h,
将(2.5,0)代入得,﹣(2.5﹣1)2+h=0,
解得h=,
当x=0时,y=﹣(0﹣1)2+=.
∴调整后水管的最大长度米.
[经验总结]本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.
16、如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.
(1)求线段CE的函数表达式(写出x的取值范围).
(2)当a=时,着陆点为P,求P的横坐标并判断成绩是否达标.
(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.
①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.
②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:≈1.73,≈2.24)
[思路分析](1)由图2可知:C(8,16),E(40,0),利用待定系数法可得出结论;
(2)当时,,联立,可得出点P的横坐标,比较jke得出结论;
(3)①猜想a与v2成反比例函数关系.将(100,0.250)代入表达式,求出m的值即可.将(150,0.167)代入进行验证即可得出结论;
②由K在线段上,得K(32,4),代入得y=﹣ax2+2x+20,得.由得v2=320,比较即可.
[答案详解]解:(1)由图2可知:C(8,16),E(40,0),
设CE:y=kx+b(k≠0),
将C(8,16),E(40,0)代入得:,解得,
∴线段CE的函数表达式为(8≤x≤40).
(2)当时,,
由题意得,
解得x1=0(舍去),x2=22.5.
∴P的横坐标为22.5.
∵22.5<32,
∴成绩未达标.
(3)①猜想a与v2成反比例函数关系.
∴设,
将(100,0.250)代入得,解得m=25,
∴.
将(150,0.167)代入验证:,
∴能相当精确地反映a与v2的关系,即为所求的函数表达式.
②由K在线段上,得K(32,4),代入得y=﹣ax2+2x+20,得.
由得v2=320,
又∵v>0,
∴.
∴当v≈18m/s时,运动员的成绩恰能达标.
[经验总结]本题属于函数综合应用,涉及待定系数法求函数解析式,反比例函数的应用及二次函数综合应用,熟知待定系数法求函数解析式是解题关键.
17、某水果经销商以19元/千克的价格新进一批芒果进行销售,因为芒果不耐储存,在运输储存过程损耗率为5%.为了得到日销售量y(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:
销售价格x(元/千克) 20 25 30 35 40
日销售量y(千克) 400 300 200 100 0
(1)这批芒果的实际成本为 元千克;[实际成本=进价÷(1﹣损耗率)]
(2)①请你根据表中的数据直接出写出y与x之间的函数表达式,标出x的取值范围;
②该水果经销商应该如何确定这批芒果的销售价格,才能使日销售利润W1最大?
(3)该水果经销商参与电商平台助农活动,开展网上直销,可以完全避免运输储存过程中的损耗成本,但每销售1千克芒果需支出a元(a>0)的相关费用,销售量与销售价格之间关系不变.当25≤x≤29,该水果经销商日获利W2的最大值为2090元,求a的值.
[思路分析](1)根据芒果进价19元/千克,在运输过程中损耗率为5%,芒果的实际进价为:,得出结论;
(2)①根据表中数据可得日销售量y与销售价格x满足一次函数,设出函数解析式,用待定系数法求出函数解析式即可,
②根据日销售利润=(销售单价﹣实际成本)×日销售量列出二次函数关系式,根据函数的性质以及x的取值范围求函数最值;
(3)根据日获利=日销售利润﹣日支出费用列出二次函数关系式,然后根据函数的性质当x=29时,函数取得最大值,解方程求出a的值.
[答案详解]解:(1)由题意知:这批芒果的实际成本为:=20(元/千克),
故答案为:20;
(2)①根据表中数据可以发现,销售价格每增加5元,日销售量减少100千克,
∴日销售量y与销售价格x满足一次函数,
设y与x的函数关系为y=kx+b,
把(20,400)与(25,300)代入解析式得:
,
解得:,
∴y与x之间的函数表达式y=﹣20x+800(20≤x≤40),
②W1=(x﹣20)(﹣20x+800)
=﹣20x2+1200x﹣16000
=﹣20(x2﹣60x+900﹣900)﹣16000=﹣20(x﹣30)2+2000,
∵a=﹣20<0,
∴抛物线开口向下,
又∵20≤x≤40,对称轴x=30,
∴当x=30时,W1最大=2000(元),
答:这批芒果的价格为30元时,才能使日销售利润最大,
(3)W2=(x﹣19)(﹣20x+800)﹣a(﹣20x+800)
=﹣20x2+(1180+20a)x﹣15200﹣800a,
对称轴:x=﹣=29.5+0.5a,
又∵a>0,
∴x=29.5+0.5a>29.5,
又∵抛物线开口向下,25≤x≤29,
∴当x=29时,W2最大=2090,
即:﹣20×292+(1180+20a)×29﹣15200﹣800a=2090,
解得:a=0.5,
答:a的值为0.5.
[经验总结]本题考查了二次函数在实际生活中的应用以及解一元一次方程,关键是根据日获利=日销售利润﹣日支出费用列出函数关系式.
18、如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.
(1)求抛物线的解析式及点A、B的坐标;
(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.
[思路分析](1)将点C的坐标代入函数解析式求得a值即可;将所求得的抛物线解析式转化为两点式,易得点A、B的坐标;
(2)由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,根据平行线截线段成比例将求的最大值转化为求的最大值,所以利用一次函数图象上点的坐标特征、二次函数图象上点的坐标特征,两点间的距离公式以及配方法解题即可.
[答案详解]解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.
解得a=﹣.
则该抛物线解析式为y=﹣x2+x+2.
由于y=﹣x2+x+2=﹣(x+1)(x﹣4).
故A(﹣1,0),B(4,0);
(2)存在,理由如下:
由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,
∴CD∥EG,
∴=.
∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).
∴CD=2﹣1=1.
∴=EG.
设BC所在直线的解析式为y=mx+n(m≠0).
将B(4,0),C(0,2)代入,得.
解得.
∴直线BC的解析式是y=﹣x+2.
设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.
∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.
∴=﹣(t﹣2)2+2.
∵<0,
∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).
[经验总结]本题考查了二次函数综合题型,需要综合运用一次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,二次函数最值的求法,待定系数法确定函数关系式以及平行线截线段成比例等知识点,综合性较强,难度不是很大.
19、如图,在某中学的一场篮球赛中,小明在距离篮圈中心7.3m(水平距离)远处跳起投篮,已知球出手时离地面m,当篮球运行的水平距离为4m时达到离地面的最大高度4m.已知篮球在空中的运行路线为一条抛物线,篮圈中心距地面3m.
(1)建立如图的平面直角坐标系,求篮球运行路线所在抛物线的函数表达式;
(2)场边看球的小丽认为:小明投出的此球不能命中篮圈中心.
①请通过计算说明小丽判断的正确性;
②若球出手的角度和力度都不变,小明应该向前走或向后退多少米才能命中篮圈中心?
(3)在球出手后,未达到最高点时,被防守队员拦截下来称为盖帽,但球到达最高点后,处于下落过程时,防守队员再出手拦截,属于犯规.在(1)的条件下,防守方球员小亮前来盖帽,已知小亮的最大摸球高度为3.19m,则他应在小明前面多少米范围处跳起拦截才能盖帽成功?
[思路分析](1)根据抛物线的顶点坐标及球出手时的坐标,可确定抛物线的解析式;
(2)①令x=7.3,求出y的值,与3m比较即可作出判断;②把y=3代入解析式求出x得值,再与7.3m比较;
(3)将y=3.19代入解析式,进而得出答案.
[答案详解]解:(1)∵抛物线顶点坐标为(4,4),
∴设抛物线的解析式为y=a(x﹣4)2+4,
把(0,)代入,得a=﹣,
所以篮球运行路线所在抛物线的函数表达式为y=﹣(x﹣4)2+4;
(2)①把x=7.3代入抛物线解析式得:y=﹣(7.3﹣4)2+4=2.79,
∵2.79<3,
∴此球不能投中,小丽的判断是正确的;
②当y=3时,3=﹣(x﹣4)2+4,
解得x=7或1(舍去),
7.3﹣7=0.3(米),
所以小明应该向前走0.3米才能命中篮圈中心;
(3)当y=3.19时,3.19=﹣(x﹣4)2+4,
解得x=1.3或6.7,
∵6.7>4,
∴x=1.3,
答:他应在小明前面1.3米范围处跳起拦截才能盖帽成功.
[经验总结]本题考查了二次函数解析式的求法及其实际应用.此题为数学建模题,借助二次函数解决实际问题.
20、为巩固“脱贫攻坚”成果,某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8<x≤32)成一次函数关系,如表列出了x与y的一些对应值:
x 16 24 32
y 168 144 120
(1)根据表中信息,求y与x的函数关系式;
(2)若五一期间销售草莓获取的利润为w(元),请写出w与x之间函数表达式,并求出销售单价为多少时,获得的利润最大?最大利润是多少?(利润=销售额﹣成本)
[思路分析](1)由图象过点(16,168)和(32,120)易求直线解析式;
(2)每天利润=每千克的利润×销售量.据此列出表达式,运用函数性质解答.
[答案详解]解:(1)设y=kx+b,由图表可知图象过点(16,168)和(32,120),
,
解得:
,
∴y=﹣3x+216(8<x≤32);
(2)W=(x﹣8)(﹣3x+216),
=﹣3x2+240x﹣1728,
=﹣3(x﹣40)2+3072.
∵抛物线开口向下,对称轴为直线x=40,
∴当8<x≤32,W随x的增大而增大,
∴当x=32时,W最大=2880.
即当销售单价为32元/千克时,可获得最大利润2880元.
[经验总结]本题考查了待定系数法求一次函数的解析式和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.
21、某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.
(1)图中点P所表示的实际意义是 ,每增种1棵果树时,每棵果树平均产量减少 kg;
(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?
[思路分析](1)根据题意可知点P所表示的实际意义,列算式求出每增种1棵果树时,每棵果树平均产量减少多少kg;
(2)先求出A点坐标,再求出y与x之间的函数关系式,再求出自变量x的取值范围;
(3)根据题意写出二次函数解析式,根据其性质,求出当增种果树多少棵时,果园的总产量w(kg)最大,及最大产量是多少.
[答案详解]解:(1)根据题意可知:点P所表示的实际意义是增种果树28棵,每棵果树平均产量为66kg,
(75﹣66)÷(28﹣10)=,
∴每增种1棵果树时,每棵果树平均产量减少kg,
故答案为:增种果树28棵,每棵果树平均产量为66kg,kg;
(2)
设在10棵的基础上增种m棵,
根据题意可得m=75﹣40,
解得m=70,
∴A(80,40),
设y与x之间的函数关系式:y=kx+b,
把P(28,66),A(80,40),
,
解得k=﹣,b=80,
∴y与x之间的函数关系式:y=﹣x+80;
自变量x的取值范围:0≤x≤80;
(3)设增种果树a棵,
W=(60+a)(﹣0.5a+80)
=﹣0.5a2+50a+4800,
∵﹣0.5<0,
∴a=﹣=50,
W最大=6050,
∴当增种果树50棵时,果园的总产量w(kg)最大,最大产量是6050kg.
[经验总结]本题考查了二次函数的应用,掌握用待定系数法求二次函数解析式,用二次函数的性质求出最大产量是解题关键.
22、如图,抛物线y=ax2+bx+c与x轴交于点A,B,与y轴交于点C,一次函数y=﹣x+3的图象经过点B,C,与抛物线对称轴交于点D,且S△ABD=4,点P是抛物线y=ax2+bx+c上的动点.
(1)求抛物线的函数解析式.
(2)当点P在直线BC上方时,求点P到直线BC的距离的最大值.
[思路分析](1)先利用一次函数求出B、C坐标,设点A (m,0),求出点D(+,﹣m+),根据SABD=4,列出方程(3﹣m)(﹣m+)=4求出m的值,然后利用待定系数法求抛物线解析式即可;
(2)过点P作PE∥OC交BC于E,PF⊥BC于F,先证∠OCB=∠OBC=45°,利用平行线性质求出∠PEF=∠OCB=45°,利用三角函数得出PF=PExsin45°=PE,点P到直线BC的距离的最大只需PE最大,设P(x,﹣x2+2x+3)则点E(x,﹣x+3),求出PE=﹣(x﹣)2+即可.
[答案详解]解:(1)∵一次函数y=﹣x+3的图象经过点B,C,
∴C(0,3),B(3,0),
设点A(m,0),
∴抛物线对称轴为x=(3+m),
∴点D(+,﹣m+),
∵S△ABD=4,
∴(3﹣m)(﹣m+)=4,
解得:m=﹣1或m=7(舍去),
∴点A(﹣1,0),
将A,B,C三点坐标代入解析式得:
,
解得:,
∴抛物线的函数解析式为y=﹣x2+2x+3;
(2)过点P作PE∥OC交BC于E,PF⊥BC于F,
∵OC=OB=3,∠COB=90°,
∴∠OCB=∠OBC=45°,
∵PE∥OC,
∴∠PEF=∠OBC=45°,
∴PF=PE×sin45°=PE,
∴点P到直线BC的距离的最大只需PE最大,
设P(x,﹣x2+2x+3),则点E(x,﹣x+3),
∴PE=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x=﹣(x﹣)2+,
∵﹣1<0,
∴当x=时,PE最大值为,
∴PF最大=PE最大=×=,
∴点P到直线BC的距离的最大值为.
[经验总结]本题考查一次函数与两轴的交点坐标,等腰三角形面积,一元二次方程,待定系数法求抛物线解析式,等腰直角三角形判定与性质,锐角三角函数,两点距离,二次函数的性质,本题难度一般,是常考题型.