2023年澳门四高校联合入学考试考试大纲数学正卷 附加卷(pdf版 含答案)

文档属性

名称 2023年澳门四高校联合入学考试考试大纲数学正卷 附加卷(pdf版 含答案)
格式 zip
文件大小 1.4MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2022-09-16 11:06:13

文档简介

2023 年澳門四高校聯合入學考試(語言科及數學科)
2023 Joint Admission Examination for Macao Four Higher
Education Institutions (Languages and Mathematics)
考試大綱 Syllabus
數學附加卷 Mathematics Supplementary Paper
考試時間:一小時
數學科附加卷的考試大綱包括數學科考試大綱的內容,並加上:
1. 函數:函數的概念、定義域及值域。圖。反函數。
2. 立體幾何:簡易立體圖形,包括長方體、角柱、圓柱、角錐、直立圓錐、球
體。
3. 線性方程組:不多於三個未知量。n n 矩陣;矩陣加法及乘法 (n 3)。行列
式(階數不大於三)。
4. 解析幾何:切線與法線。極座標。
5. 三角:三角函數方程及其通解。
6. 基本微積分:多項式的和、差、積、商的微分法。極大值、極小值及拐點。
多項式的不定積分。不定積分和定積分的簡易性質。利用定積分計算面積。
7. 曲線的描繪:偶、奇及週期函數。導數的應用。
8. 向量:純量與二維空間中的向量;向量加法及純量乘法。位置向量。笛卡兒
分量。純量積。
9. 複數:虛數。複數的運算。二次多項式的複根。複數的極式。有理指數的棣
美弗定理。n 次根。
2
附錄--數學符號
除了數學正卷所用到的符號外,數學附加卷亦會採用以下符號:
f 1(x) 函數 f (x) 的反函數。
AB 從點 A 到點 B 的向量。
AB AB 的大小 (長度)。
AB CD AB 與 CD 的純量積。
| A | 方陣 A 的行列式。
d 2dy y
, y 的一階及二階導數。
dx dx
2
f (x) , f (x) f (x) 的一階及二階導數。
f (x) dx f (x) 的不定積分。
b
f (x) dx f (x) 在區間 [a, b] 上的定積分。 a
Re(z), Im(z), | z | , 複數 z 的實部、虛部、模、幅角及共軛。
arg(z), z
3
Examination Duration: 1 hour
The syllabus of the Mathematics Supplementary Paper includes the contents in the
Mathematics Examination Syllabus, together with:
1. Functions: Concept of function, domain and range. Graphs. Inverse functions.
2. Solid Geometry: Simple solid figures, including rectangular block, prism, cylinder,
pyramid, right circular cone and sphere.
3. System of Linear Equations: No more than three unknowns. n n matrices: addition
and multiplication of matrices (n 3). Determinants (up to order 3).
4. Coordinate Geometry: Tangent and normal. Polar coordinates.
5. Trigonometry: Trigonometric equations and general solutions.
6. Basic Calculus: Differentiation of a sum, a difference, a product, and a quotient of
polynomials. Maxima, minima and inflection points. Indefinite integral of
polynomials. Simple properties of indefinite integrals and definite integrals. Area
by integration.
7. Curve Sketching: Even, odd and periodic functions. Application of derivatives.
8. Vectors: Scalars and vectors in 2-dimensional space; vector addition and scalar
multiplication. Position vectors. Cartesian components. Scalar product.
9. Complex Numbers: Imaginary numbers. Manipulation of complex numbers.
Complex roots of quadratic equations. Polar form of complex numbers. De
Moivre’s theorem for rational indices. n-th root.
4
Appendix – Mathematical Symbols
In addition to those notations used in the Mathematics Standard Paper, the
Mathematics Supplementary Paper adopts the following notations:
f 1(x) Inverse function of the function f (x) .
AB Vector from point A to point B.
AB Magnitude (length) of AB .
AB CD Scalar product of AB and CD .
| A | Determinant of the square matrix A.
d 2dy y
, First and second derivatives of y.
dx dx
2
f (x) , f (x) First and second derivatives of f (x) .
f (x) dx Indefinite integral of f (x) .
b
f (x) dx Definite integral of f (x) over interval [a, b]. a
Re(z), Im(z), | z | , The real part, imaginary part, modulus, argument, and conjugate
arg(z), z of the complex number z.
52023年澳門四高校聯合入學考試 (語言科及數學科)
2023 Joint Admission Examination for
Macao Four Higher Education Institutions (Languages and Mathematics)
考試大綱 Syllabus
數學正卷 Mathematics Standard Paper
考試時間:兩小時
1. 基本概念:實數系統;集合和子集的概念;集合的運算:併集、交集和補集。偉恩
(Venn) 圖。數學歸納法。
2. 百分數:百分數的意義及其在日常生活中的應用;盈利和虧蝕、折扣、單利息和複
利息、增長及折舊。
3. 變分:比、比例;正變、反變、聯變及部分變。
4. 多項式及有理分式:多項式的運算,長除法及綜合除法;因式分解:因式定理及餘
式定理,最高公因式 (H.C.F.) 及最低公倍式 (L.C.M.);平方差公式,立方和 (立方差)
公式,部分分式。
5. 二次方程及二次函數:一元二次方程的解與判別式的關係,二次公式;根與係數的
關係;二次函數的極值 – 配方法的應用。
6. 指數及根式:指數定律;根式的簡化與運算。
7. 代數不等式:代數不等式和絕對不等式的運算及其解集;解一元一次或二元一次不
等式組,包括用幾何方法求解;在線性規劃問題的應用。
8. 對數函數與指數函數:對數的性質,換底公式,自然指數函數;在增長及衰變過程
的應用 (包括連續複利息);解指數方程及對數方程。
9. 非線性方程:解分式方程及無理方程。
10. 排列與組合:基本概念,二項式定理。
11. 數列:等差數列、等比數列及前 n 項和;等比數列無限項之和。
2
12. 直線圖形及圓:
(A) 直線圖形:三角形及凸多邊形內角和;直線及角的性質和定理;相似三角形、全等
三角形;畢氏定理 (勾股定理);三角形、正方形、矩形、菱形及平行四邊形的性質;
中位線定理及截距定理。
(B) 圓:圓、弦及弧的性質;圓心角、圓周角、圓內接四邊形、外接圓;弧長及扇形面
積。
13. 三角:角度制及弧度制的關係;三角函數與三角恆等式,複角公式及半角公式;式
子 a cos b sin 與輔助角公式;三角形面積;正弦定律,餘弦定律;反三角函數的
定義;含一個未知數的三角方程求解。
14. 解析幾何:
(A) 直角座標系,兩點的距離,線段的定比分點;直線的斜率及截距,直線方程的不同
表達式;兩線平行與垂直。解不多於三個未知數的線性方程組。
(B) 圓的標準方程、一般方程、圖形和性質;橢圓、雙曲線、拋物線的定義和標準方程、
圖形和性質。直線與圓錐曲線的相交。
15. 函數圖形:一次、二次及三次函數,有理函數、對數及指數函數,正弦、餘弦及正
切函數的描繪;對稱、平移、伸展、收縮及反射等技巧的運用。
16. 概率和統計:隨機試驗,結果與事件;概率加法規則和乘法規則;集中趨勢的度量:
算術平均數,眾數及中位數;離散度的度量:極差,方差及標準差。
3
Examination Duration: 2 hours
1. Fundamental Concepts: real number system; concept of sets and subsets; set operations,
union, intersection and complement. Venn diagrams. Mathematical induction.
2. Percentage: its meaning and applications to daily life problems. Profit and loss, discount,
simple and compound interest, growth and depreciation.
3. Variations: ratio, proportion; direct, inverse, joint and partial variations.
4. Polynomial and Rational Fraction: manipulation of polynomials, long division and
synthetic division, factorization of polynomials: the factor theorem and the remainder
theorem; highest common factor (H.C.F.) and least common multiple (L.C.M.); formula
for the difference of two squares, formulae for the sum of two cubes and the difference of
two cubes; partial fractions.
5. Quadratic Equations and Quadratic Functions: the relation between the solution of a
quadratic equation in one variable and its discriminant, the quadratic formula; relations
between roots and coefficients; the extreme value of a quadratic function – applying the
method of completing the square.
6. Indices and Surds: laws of indices; simplification and operations of surds.
7. Algebraic Inequalities: manipulation of algebraic inequalities and absolute inequalities, and
their solution sets; solving system of linear inequalities in one or two variables, including
graphical solutions; applications to linear programming problems.
8. Logarithmic and Exponential Functions: properties of logarithms, change of bases of
logarithms; natural exponential functions; applications in growth and decay processes
(including continuous compounding of interest); solving equations of indices and equations
of logarithms.
9. Nonlinear equations: solving fractional equations and irrational equations.
10. Permutation and Combination: basic concepts, binomial theorem.
11. Sequences: arithmetic sequence, geometric sequence, sum of the first n terms; sum of
geometric sequence with an infinite number of terms.
4
12. Rectilinear Figures and Circles:
(A) Rectilinear Figures: the sum of interior angles of triangles and convex polygons; properties
and theorems of lines and angles; similar triangles, congruent triangles; Pythagoras’
theorem; properties of squares, rectangles, rhombuses, and parallelograms; mid-point
theorem and intercept theorem.
(B) Circles: properties of circles, arcs and chords; angles of chord, angles of circumference,
cyclic quadrilaterals, circumcircles; arc lengths and area of sectors.
13. Trigonometry: relation between degree measure and radian measure; trigonometric
functions and trigonometric identities, compound angle formula and half-angle formula;
the expression a cos b sin and the auxiliary angle formula; area of a triangle; the Sine
Law, the Cosine Law; the definitions of inverse trigonometric functions; solving
trigonometric equations in one unknown.
14. Analytic Geometry:
(A) Rectangular Cartesian coordinate system, distance between two points; point of division of
a line segment in a given ratio; the slope and intercepts of a straight line, different forms of
equations of a straight line; parallel and perpendicular lines. Solving system of linear
equations with at most three unknowns.
(B) The standard form of a circle, its general form, its graph and its properties; the definitions
and standard forms of ellipse, hyperbola, and parabola, their graphs and their properties.
Intersection of lines and conic.
15. Graphs of functions: sketching of linear, quadratic, cubic, rational, logarithmic, exponential,
sine, cosine, and tangent functions; application of the techniques of symmetry, translation,
stretching, shrinking, and reflection.
16. Probability and Statistics: random experiment, outcomes and events; addition rule and
multiplication rule of probabilities; measures of central tendency: mean, mode, and median;
measures of dispersion: range, variance and standard deviation.
5
常用數學符號表
A List of Commonly Used Mathematical Symbols and Notations
符號/記號
說明 Description
Symbol/Notation
實數集 Set of real numbers
正實數集 Set of positive real numbers
整數集 Set of integers
正整數集 Set of positive integers
有理數集 Set of rational numbers
x A x 屬於 A x belongs to A
{x : | x | 3} 描述集合的一個方法 A way of describing a set
A B A 是 B 的子集 A is a subset of B
A B A 是 B 的真子集 A is a proper subset of B
A ∪ B A 和 B 的併集 A union B
A ∩ B A 和 B 的交集 A intersection B
Ac A 的補集 Complement of A
空集 Empty set
∵ 因為 Because
∴ 所以 Therefore
≡ 恆等 Identically equal
無限大 Infinity
x y x 和 y 成正比 x varies directly with y
a n a 的 n 次方 a to the power n
√ a 的 n 次方根 n
th root of a
| x | x 的絕對值 Absolute value of x
log b a 以 b 為底 a 的對數 Logarithm of a to base b
log a a 的常用對數 Common logarithm of a
ln a a 的自然對數 Natural logarithm of a
n P r 排列記號 Permutation notation
n C r 組合記號 Combination notation
n! n 的階乘 n factorial
{an}n 1 數列記號 Sequence notation
AB 線段 Line segment
| AB | 線段長度 Length of a line segment
弧段 Arc
ABC 三角形 Triangle
ABC 角度 Angle
sin 的正弦 Sine of
cos 的餘弦 Cosine of
tan 的正切 Tangent of
sin 1 x x 的反正弦 Arc sine of x
cos 1 x x 的反餘弦 Arc cosine of x
tan 1 x x 的反正切 Arc tangent of x
L1 // L2 兩條平行線 Two parallel lines
L1 L2 兩條垂直線 Two perpendicular lines
f(x) 函數或函數值 Function or function value
P(E) 事件 E 的概率 Probability of event E
6
同课章节目录