中小学教育资源及组卷应用平台
第十一章《三角形》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一、选择题(每小题3分,共30分)
1. 已知一个多边形的内角和是1080度,则这个多边形是()
A 五边形 B 六边形 C 七边形 D 八边形
2. 下列叙述中正确的是()
A 三角形按边分,可分为不等边三角形,等腰三角形与等边三角形
B 等腰三角形是等边三角形
C 等腰三角形至少有两边相等
D 因为a+c>b,所以a、b、c三边可以构成三角形
3. 已知等腰三角形的两边长分别为6cm,7cm,则这个三角形的周长为 ( )
A. 20cm B.19cm
C. 20cm或19cm D. 不确定
4.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是( )
A.9 B.14 C.16 D.不能确定
5.如图,,,,垂足分别为,,,则下列说法不正确的是
A.是的高 B.是的高
C.是的高 D.是的高
6.如图,在中,,,,的度数是
A. B. C. D.
7.如图,多边形中,,,则的值为
A. B. C. D.
8.如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是( )
A.两点之间线段最短 B.垂线段最短
C.两定确定一条直线 D.三角形的稳定性
9.如图,在中,,,是边上的高,平分交于,是中边上的高,则的度数是
A. B. C. D.
10.如图,在中,平分,平分,,则
A. B. C. D.
二、填空题(每题3分,共24分)
11. 如图,在△ABC中,D,E分别是AB,AC上的点,点F在BC的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2=________°.
12. 如图,在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为________.
13. 如图,AD为△ABC的角平分线,DE∥AB交AC于点E.若∠BAC=100°,则∠ADE=________°.
14.△ABC中,∠B=40°,D在BA的延长线上,AE平分∠CAD,且AE∥BC,则∠BAC= .
15.如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C= .
16.如图所示,△ABC中,BD平分∠ABC,CE平分∠ACB的邻补角∠ACM,若∠BDC=130°,∠E=50°,则∠BAC的度数是 .
17.如图是一副三角尺拼成的图案,则∠CEB=________°.
INCLUDEPICTURE"11-3.tif" INCLUDEPICTURE "C:\\Users\\Administrator\\Desktop\\八上R典中点\\11-3.tif" \* MERGEFORMATINET
18.今年暑假,实验中学安排全校师生假期进行社会实践活动,将每班分成三个组,每组派一名教师作为指导老师.为了加强同学间的协作,学校要求各班每两人之间(包括指导教师)每周至少通一次电话,现知该校八年级(5)班共有50名学生,那么该班师生之间每周至少要通几次电话?
为了解决这一问题,小明把该班师生人数n与每周至少通电话次数S之间的关系用下列模型表示,如图
根据小明设计的模型,可知该班师生之间每周至少要通电话的次数为________.
三.解答题(共46分,19题6分,20 ---24题8分)
19.如图:
(1)在△ABC中,BC边上的高是AB;
(2)在△AEC中,AE边上的高是CD;
(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.
20.已知一个多边形的内角和与外角和之比为11∶2.
(1)求这个多边形的内角和;
(2)求这个多边形的边数.
21.如图,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.
22.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;求证:CD⊥AB;
23.如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.
(1)求证:MN∥PQ;
(2)若∠ABC=∠NAC+10°,求∠ADB的度数.
24.(1)如图①,△ABC是锐角三角形,高BD、CE相交于点H,找出∠BHC和∠A之间存在何种等量关系;
(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD、CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?
答案
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 D C C A B B C D B B
二、填空题
11. 【答案】101
12. 【答案】100°
13. 【答案】50 [解析] ∵AD为△ABC的角平分线,∠BAC=100°,
∴∠BAD=∠CAD=×100°=50°.
∵DE∥AB,∴∠ADE=∠BAD=50°.
14.100° 15.92° 16.120°
17.105
18.【答案】1378 [解析] 将八年级(5)班师生共53人看作五十三边形的53个顶点,由多边形对角线条数公式可得对角线为=1325(条),
1325+53=1378(次).
因此该班师生之间每周至少要通1378次电话.
[点评] 本题的数学模型实质上是n个人之间彼此握一次手,求握手总次数的问题,其次数为n+(n-3)·n=n(n-1).
三、解答题
19.解:(1)AB
(2)CD
(3)∵AE=3cm,CD=2cm,∴S△AEC=AE·CD=×3×2=3(cm2).(5分)∵S△AEC=CE·AB=3cm2,AB=2cm,∴CE=3cm.
20..解:(1)360°×=1980°.
即这个多边形的内角和为1980°.
(2)设该多边形的边数为n,
则(n-2)×180°=1980°,
解得n=13.
即这个多边形的边数为13.
21.解:∵∠ADB=∠DBC+∠ACB,
∴∠DBC=∠ADB-∠ACB=97°-60°=37°.
∵BD是∠ABC的平分线,
∴∠ABC=74°,
∴∠A=180°-∠ABC-∠ACB=46°.
∵CE是AB边上的高,
∴∠AEC=90°,
∴∠ACE=90°-∠A=44°.
22.证明:
∵∠ACB=90° ∴∠A+∠B=90° ∵∠ACD=∠B ∴∠A+∠ACD=90° ∴∠ADC=90°
∴CD⊥AB
23.【解答】(1)证明:∵AC⊥AB,
∴∠BAC=90°,
∴∠ABC+∠ACB=90°,
∵∠NAC+∠ABC=90°,
∴∠NAC=∠ACB,
∴MN∥PQ;
(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,
∵∠ACB+∠ABC=90°,
∴∠ACB+∠ACB+10°=90°,
∴∠ACB=40°,
∴∠ABC=50°,
∵BD平分∠ABC,
∴∠ABDABC=25°,
∵∠BAC=90°,
∴∠ADB=90°﹣25°=65°.
24.解:(1)由∠BHC与∠EHD是对顶角,得
∠BHC=∠EHD.
由高BD、CE相交于点H,得
∠ADH=∠AEH=90°.
由四边形内角和定理,得
∠A+∠AEH+∠EHD+∠HDA=360°,
∠A+∠EHD=360°﹣∠AEH﹣∠HDA=360°﹣90°﹣90°=180°,
∴∠BHC+∠A=180°;
(2)由∠BHC与∠EHD是对顶角,得
∠BHC=∠EHD.
由高BD、CE相交于点H,得
∠ADH=∠AEH=90°.
由四边形内角和定理,得
∠H+∠AEH+∠EHD+∠HDA=360°,
∠H+∠DAE=360°﹣∠AEH﹣∠HDA=360°﹣90°﹣90°=180°,
∴∠BHC+∠BAC=180°.
【点评】本题考查了多边形的内角与外角,利用了四边形的内角和,对顶角的性质.
第16题图
第15题图
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)