课题 4.3一元一次方程的应用第2课时
学习目标 探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程 解简单的应用题
学习策略 理解概念,掌握形式,主动探索
学习过程 复习巩固 长方体甲的长宽高分别为260mm,150mm,325mm,长方体乙的地底面积为130130mm2。已知甲的体积是乙的体积的2.5倍,求乙的高。
新课学习 学习准备 1、打折销售问题中的基本概念:( 1)商品利润=商品售价-商品进价(成本价) (2)利 润率 = ×100% 2、把折扣数“六折” “七五折” “八八折”化成百分数? 3、阅读教材: 1教材精读 1.理解打折销售的相关概念 填空:(1)、原价100元的商品打8折后价格为 元; (2)、原价100元的商品提价40%后的价格为 元; (3)、进价100元的商品以150元卖出,利润是 元,利润率是 ; (4)、原价X元的商品打8折后价格为 元; (5)、原价X元的商品提价40%后的价格为 元; (6)、原价100元的商品提价P %后的价格为 元; (70、进价A元的商品以B元卖出,利润是 元,利润率是 。 实践练习:某种品牌的电脑的进价为5000元,按物价局定价的9折销售时,获利760 元,则此电脑的定价为多少元? (领悟基本关系式:利润=售价-成本) 解:设 例1 一家商店将服装按成本价提高50%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元? 想一想:15元利润是怎样产生的? 解:设每件服装的成本价为X元,那么 每件服装的标价为: ; 每件服装的实际售价为: ; 每件服装的利润为: ; 由此,列出方程: ; 解方程,得:X= 。 因此,每件服装的成本价是 元。 例2 新华书店一天内销售两种书籍,甲种书籍共卖得1560元,为了发展农业, 乙种书籍举行送书下乡活动,共卖得1350元,若按甲、乙两种书的成本分别计算,甲 种书盈利25%,乙种书亏本10%,试问该书店这一天共盈利(或亏本)多少元? 分析:本题可利用公式:总销售额-总成本=盈利(或亏本)来做.关键是求出甲、乙两种书籍的成本. 甲的成本为;乙的成本为. 解:设该书店这一天共盈利(或亏本)x元.根据题意,得
尝试应用 1.一件夹克按成本提高50%后标价,后因季节关系按标价的8折出售,每件售出价刚 好是60元,请问这批夹克每件的成本价是多少? 2.某商品的进价是400元,标价是550元,按标价的8折出售时,该商品的利润率是 多少? 3.某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元,为了扩大销 售,增加盈利,减少库存,商场决定采取降价措施。经调研发现,如果每件衬衫每降价 1元,商场平均每天多售出2件,若商场每天要盈利1200元,每件衬衫应降低多少元?
自主总结 打折销售问题中的基本概念:(1)商品利润= _____ (2)利 润率 = 三、方法规律 解决打折销售问题的过程中,要抓住这个利润率 = =等量关系.
达标测试 1.一种小麦的出粉率是80%,那么200千克这种小麦可出粉( ) A.80千克 B.160千克 C.200千克 D.100千克 2.一批200千克的种子中有190千克出芽,照这样算发芽率应为( ) A.5% B.95% C.190% D.100% 3.一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是( ) A.150元 B.80元 C.100元 D.120元 4.某商场卖出两个进价不同的手机,都卖了1200元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商场( ) A.不赔不赚 B.赔100元 C.赚100元 D.赚360元 5.某件商品进价100元,售价150元,则其利润是 元,利润率是 . 6.一件服装进价200元,按标价的8折销售,仍可获利10%,该服装的标价是 元. 7.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是 元. 8.一件商品,如果它的标价为1000元,进价600元,为了保证利润不低于10%,最低可打几折销售? 9.某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,问:这种商品定价多少元?
1