2022-2023学年人教版八年级数学上册《12.2三角形全等的判定》解答专项练习题(附答案)
1.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
2.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
3.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.
4.已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.
5.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.
6.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.
7.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.
(1)说明BD=CE;
(2)延长BD,交CE于点F,求∠BFC的度数;
(3)若如图2放置,上面的结论还成立吗?请简单说明理由.
8.如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别为D,E,已知DC=2,求BE的长.
9.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)Rt△ADE与Rt△BEC全等吗?并说明理由;
(2)△CDE是不是直角三角形?并说明理由.
10.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.
11.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.
12.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:
(1)△AEH≌△BEC.
(2)AH=2BD.
13.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.
14.如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.
(1)求证:△AGE≌△AFC;
(2)若AB=AC,求证:AD=AF+BD.
15.如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,
(1)求证:DE=BD﹣CE.
(2)如果是如图2这个图形,BD、CE、DE有什么数量关系?并证明.
16.如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t秒,且t≤5.
(1)PC= cm(用含t的代数式表示).
(2)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得以A、B、P为顶点的三角形与以P、Q、C为顶点的三角形全等?若存在,请求出v的值;若不存在,请说明理由.
17.如图,在△ABC中,∠ACB=90,AC=6,BC=8.点P从点A出发,沿折线AC﹣﹣CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):
(1)当P、Q两点相遇时,求t的值;
(2)在整个运动过程中,求CP的长(用含t的代数式表示);
(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.
18.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B作BF∥AE交ED于F,且EM=FM.
(1)若AE=5,求BF的长;
(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.
19.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:
①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
20.(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.
21.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
【问题解决】
如图1,若点D在边BC上,求证:CE+CF=CD;
【类比探究】
如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.
22.问题背景:
(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 .
探索延伸:
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
23.如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.
(1)求证:△ADB≌△CDE;
(2)求∠MDN的度数.
参考答案
1.①证明:在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS);
②解:∵在△ABC中,AB=CB,∠ABC=90°,
∴∠BAC=∠ACB=45°,
由①得:△ABE≌△CBD,
∴∠AEB=∠BDC,
∵∠AEB为△AEC的外角,
∴∠AEB=∠ACB+∠CAE=30°+45°=75°,
则∠BDC=75°.
2.(1)证明:∵∠BAC=∠DAE=90°
∴∠BAC+∠CAD=∠DAE+∠CAD
即∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS).
(2)BD、CE特殊位置关系为BD⊥CE.
证明如下:由(1)知△BAD≌△CAE,
∴∠ADB=∠E.
∵∠DAE=90°,
∴∠E+∠ADE=90°.
∴∠ADB+∠ADE=90°.
即∠BDE=90°.
∴BD、CE特殊位置关系为BD⊥CE.
3.(1)证明:在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴BD=CE;
(2)证明:∵∠1=∠2,
∴∠1+∠DAE=∠2+∠DAE,
即∠BAN=∠CAM,
由(1)得:△ABD≌△ACE,
∴∠B=∠C,
在△ACM和△ABN中,,
∴△ACM≌△ABN(ASA),
∴∠M=∠N.
4.证明:∵BD、CE分别是AC、AB边上的高,
∴∠ADB=90°,∠AEC=90°,
∴∠ABQ+∠BAD=90°,∠BAC+∠ACE=90°,
∴∠ABD=∠ACE,
在△ABQ和△FCA中,
∴△ABQ≌△FCA(SAS),
∴∠F=∠BAQ,
∵∠F+∠FAE=90°,
∴∠BAQ+∠FAE=90°,
∴AF⊥AQ.
5.证明:∵∠1=∠2,
∴∠CAB=∠DAE,
在△BAC和△DAE中,,
∴△BAC≌△DAE(SAS),
∴BC=DE.
6.证明:∵∠BAC=∠DAE,
∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
即∠BAD=∠CAE,
在△ABD和△AEC中,
,
∴△ABD≌△AEC(SAS).
7.解:(1)∵△ABC、△ADE是等腰直角三角形,
∴AB=AC,∠BAD=∠EAC=90°,AD=AE,
∵在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE;
(2)∵△ADB≌△AEC,
∴∠ACE=∠ABD,
而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF
又∵∠CDF=∠BDA
∴∠BFC=180°﹣∠DBA﹣∠BDA
=∠DAB
=90°;
(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:
如图2,
△ABC、△ADE是等腰直角三角形
∴AB=AC,AD=AE,∠BAC=∠EAD=90°,
∵∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAD=∠CAE,
∵在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS)
∴BD=CE,∠ACE=∠DBA,
∵∠1=∠2,
∴∠FCA+∠BFC=∠CAB+∠ABD
∴∠BFC=∠CAB=90°.
8.解:∵∠ABC=∠BAC=45°,
∴∠ACB=90°,AC=BC,
∵∠DAC+∠ACD=90°,∠BCE+∠ACD=90°,
∴∠DAC=∠BCE,
在△ACD和△CEB中,,
∴△ACD≌△CEB(AAS),
∴BE=CD=2.
9.解:(1)全等,理由是:
∵∠1=∠2,
∴DE=CE,
在Rt△ADE和Rt△BEC中,
,
∴Rt△ADE≌Rt△BEC(HL);
(2)是直角三角形,理由是:
∵Rt△ADE≌Rt△BEC,
∴∠3=∠4,
∵∠3+∠5=90°,
∴∠4+∠5=90°,
∴∠DEC=90°,
∴△CDE是直角三角形.
10.解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS);
由题意得:AD=EC=6cm,DC=BE=14cm,
∴DE=DC+CE=20(cm),
答:两堵木墙之间的距离为20cm.
11.解:(1)△ACP≌△BPQ,PC⊥PQ.
理由如下:∵AC⊥AB,BD⊥AB,
∴∠A=∠B=90°,
∵AP=BQ=2,
∴BP=5,
∴BP=AC,
在△ACP和△BPQ中
,
∴△ACP≌△BPQ(SAS);
∴∠C=∠BPQ,
∵∠C+∠APC=90°,
∴∠APC+∠BPQ=90°,
∴∠CPQ=90°,
∴PC⊥PQ;
(2)①若△ACP≌△BPQ,
则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt
解得:x=2,t=1;
②若△ACP≌△BQP,
则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t
解得:x=,t=.
综上所述,当△ACP与△BPQ全等时x的值为2或.
12.解:(1)∵AD⊥BC,
∴∠DAC+∠C=90°,
∵BE⊥AC,
∴∠EBC+∠C=90°,
∴∠DAC=∠EBC,
在△AEH与△BEC中,
,
∴△AEH≌△BEC(ASA);
(2)∵△AEH≌△BEC,
∴AH=BC,
∵AB=AC,AD⊥BC,
∴BC=2BD,
∴AH=2BD.
13.证明:CD=BE,CD⊥BE,
理由如下:
因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,
即∠BAE=∠DAC.
因为,
所以△BAE≌△DAC(SAS).
所以BE=DC,∠BEA=∠DCA.
如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,
所以∠BEA+∠DFE=90°.即CD⊥BE.
14.证明:(1)∵∠CAB=∠FAE=90°,
∴∠CAB﹣∠FAG=∠FAE﹣∠FAG,即∠CAF=∠EAG,
∵AC=AE,
∴∠ACF=∠AEG,
在△AGE和△AFC中,
,
∴△AGE≌△AFC(ASA);
(2)延长AF至点H,使AH=AD,
在Rt△CAH和Rt△BAD中,
,
∴Rt△CAH≌Rt△BAD(HL)
∴CH=BD,∠ACH=∠ABD=90°,
∴CH∥AB,
∴∠HCF=∠AGF,
∵△AGE≌△AFC,
∴∠AGE=∠AFC,
∴∠AGF=∠AFG,
∴∠HCF=∠HFC,
∴HC=HF,
∴AH=AF+HF=AF+CH,
∴AD=AF+BD.
15.证明:(1)∵BD⊥DE,CE⊥DE,
∴∠D=∠E=90°,
∴∠DBA+∠DAB=90°,
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,
∴∠DBA=∠CAE,且AB=AC,∠D=∠E=90°,
∴△ADB≌△CEA(AAS),
∴BD=AE,CE=AD,
∴DE=AD+AE=CE+BD;
(2)BD=DE+CE,
理由如下:
∵BD⊥DE,CE⊥DE,
∴∠ADB=∠AEC=90°,
∴∠ABD+∠BAD=90°,
∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
∴∠ABD=∠EAC,且AB=AC,∠ADB=∠AEC=90°,
∴△ADB≌△CEA(AAS)
∴BD=AE,CE=AD,
∵AE=AD+DE,
∴BD=CE+DE.
16.解:(1)BP=2t,则PC=10﹣2t;
故答案为(10﹣2t);
(2)存在.
分两种情况讨论:
①当BP=CQ,AB=PC时,△ABP≌△PCQ.
因为AB=6,所以PC=6.
所以BP=10﹣6=4,即2t=4.
解得t=2.
因为CQ=BP=4,v×2=4,所以v=2.
②当BA=CQ,PB=PC时,△ABP≌△QCP.
因为PB=PC,
所以BP=PC=BC=5,即2t=5.
解得t=2.5.
因为CQ=BA=6,即v×2.5=6,解得v=2.4.
综上所述,当v=2.4或2时,△ABP与△PQC全等.
17.解:(1)由题意得t+3t=6+8,
解得t=(秒),
当P、Q两点相遇时,t的值为秒;
(2)由题意可知AP=t,
则CP的长为;
(3)当P在AC上,Q在BC上时,
∵∠ACB=90,
∴∠PCE+∠QCF=90°,
∵PE⊥l于E,QF⊥l于F.
∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,
∴∠EPC=∠QCF,
∴△PCE≌△CQF,
∴PC=CQ,
∴6﹣t=8﹣3t,解得t=1,
∴CQ=8﹣3t=5;
当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,
由题意得,6﹣t=3t﹣8,
解得t=3.5,
∴CQ=3t﹣8=2.5,
当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,
综上,当△PEC与△QFC全等时,满足条件的CQ的长为5或2.5或6.
18.(1)解:∵BF∥AE,
∴∠EAM=∠FBM,∠E=∠BFM,
在△AEM和△BFM中,
,
∴△AEM≌△BFM(AAS),
∴AE=BF,
∵AE=5,
∴BF=5;
(2)证明:∵BF∥AE,
∴∠AEC=∠BFM,
∵∠AEC=90°,
∴∠BFM=90°,
∴∠BFD=180°﹣90°=90°,
∴∠AEC=∠BFD,
由(1)知AE=BF,
在△ACE和△BDF中,
,
∴△ACE≌△BDF(ASA),
∴CE=DF,
∴DF﹣CF=CE﹣CF,
即CD=FE.
19.证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,
∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.
∴∠CAD=∠BCE.
∵AC=BC,
∴△ADC≌△CEB.
②∵△ADC≌△CEB,
∴CE=AD,CD=BE.
∴DE=CE+CD=AD+BE.
解:(2)∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE.
又∵AC=BC,
∴△ACD≌△CBE.
∴CE=AD,CD=BE.
∴DE=CE﹣CD=AD﹣BE.
(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).
∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE,
又∵AC=BC,
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
∴DE=CD﹣CE=BE﹣AD.
20.证明:(1)∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)结论DE=BD+CE仍然成立,理由是:
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
21.【问题解决】证明:在CD上截取CH=CE,如图1所示:
∵△ABC是等边三角形,
∴∠ECH=60°,
∴△CEH是等边三角形,
∴EH=EC=CH,∠CEH=60°,
∵△DEF是等边三角形,
∴DE=FE,∠DEF=60°,
∴∠DEH+∠HEF=∠FEC+∠HEF=60°,
∴∠DEH=∠FEC,
在△DEH和△FEC中,
,
∴△DEH≌△FEC(SAS),
∴DH=CF,
∴CD=CH+DH=CE+CF,
∴CE+CF=CD;
【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:
∵△ABC是等边三角形,
∴∠A=∠B=60°,
过D作DG∥AB,交AC的延长线于点G,如图2所示:
∵GD∥AB,
∴∠GDC=∠B=60°,∠DGC=∠A=60°,
∴∠GDC=∠DGC=60°,
∴△GCD为等边三角形,
∴DG=CD=CG,∠GDC=60°,
∵△EDF为等边三角形,
∴ED=DF,∠EDF=∠GDC=60°,
∴∠EDG=∠FDC,
在△EGD和△FCD中,
,
∴△EGD≌△FCD(SAS),
∴EG=FC,
∴FC=EG=CG+CE=CD+CE.
22.证明:(1)在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案为 EF=BE+DF.
(2)结论EF=BE+DF仍然成立;
理由:如图2,延长FD到点G.使DG=BE.连接AG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
23.解:(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△ABD与△CDE中,
,
∴△ABD≌△CDE(SAS);
(2)∵△ABD≌△CDE,
∴∠BAD=∠DCE,AB=CE,
∵M、N分别是AB、CE的中点,
∴AM=AB,CN=CE,
∴AM=CN,
在△ADM和△CDN中,
,
∴△ADM≌△CDN(SAS),
∴∠ADM=∠CDN,
∵∠CDN+∠ADN=90°,
∴∠ADM+∠ADN=90°,
∴∠MDN=90°.