中小学教育资源及组卷应用平台
突破3.4 函数的应用(一)
A组 基础巩固
1.(2017·河北张家口·高一阶段练习)同班同村的两同学小强、小红某次上学所走路程与时间的函数关系如图所示,则下列说法正确的是
A.小强比小红走的路程多 B.小强比小红先到达终点
C.小强、小红两人的平均速度相同 D.小红比小强后出发
2.(2020·重庆市育才中学高一开学考试)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从地出发前往地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发分钟.乙骑行分钟后,甲以原速的继续骑行,经过一段时间,甲先到达地,乙一直保持原速前往地.在此过程中,甲、乙两人相距的路程(单位:米)与乙骑行的时间(单位:分钟)之间的关系如图所示,则下列说法错误的是( )
A.乙的速度为米/分钟 B.分钟后甲的速度为米/分钟
C.乙比甲晚分钟到达地 D.、两地之间的路程为米
3.(2021·重庆合川·高二阶段练习)甲、乙两人走过的路程s1(t),s2(t)与时间t的关系如图,则在[0,t0]这个时间段内,甲、乙两人的平均速度v甲,v乙的关系是( )
A.v甲>v乙 B.v甲<v乙
C.v甲=v乙 D.大小关系不确定
4.(2022·湖南·高一课时练习)向高为H的水瓶内注水,一直到注满为止,如果注水量V与水深h的函数图象如图所示,那么水瓶的形状大致是( )
A. B. C. D.
5.(2021·全国·高一课时练习)某产品的总成本y万元与产量x(台)之间的关系是, ,若每台产品的售价为9万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )
A.3台 B.5台 C.6台 D.10台
6.(2021·全国·高一专题练习)某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )
A.0.33米 B.0.42米 C.0.39米 D.0.43米
7.(2021·全国·高一专题练习)规定从甲地到乙地通话 min的电话费由(元)决定,其中>0,[]是大于或等于的最小整数,如[2]=2,[2.7]=3,[2.1]=3,则从甲地到乙地通话时间为4.5 min的电话费为( )元
A.4.8 B.5.2 C.5.6 D.6
8.(2022·新疆·乌苏市第一中学高二期中(理))某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益与年产量的关系式,则总利润最大时,每年生产的产品数量是__________.
9.(2022·广东揭阳·高一期末)已知[x]表示不超过x的最大整数,定义函数f(x)=x-[x].有下列结论:
①函数的图象是一条直线;②函数f(x)的值域为[0,1);③方程f(x)=有无数个解;④函数是R上的增函数.其中正确的是____.(填序号)
10.(2021·全国·高一课时练习)某青年旅社有200张床位,若每床每晚的租金为50元,则可全部出租;若将出租费标准每晚提高10的整数倍,则出租的床位会减少10的相应倍数张.若要使该旅社每晚的收入超过1.2万元,则每个床位的定价的取值范围是___________;
11.(2021·全国·高一专题练习)已知甲、乙两地相距.根据交通法规,两地之间的车速应限制在.假设油价是7元/,某汽车以的速度行驶,其耗油量为,司机每小时的工资是35元.如果不考虑其他费用,那么该汽车从甲地到乙地的总费用最低是____元,此时车速是___.
12.(2021·全国·高一专题练习)现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取粒红豆,乙每次取粒白豆,同时进行,当红豆取完时,白豆还剩粒;第二轮,甲每次取粒红豆,乙每次取粒白豆,同时进行,当白豆取完时,红豆还剩粒.则红豆和白豆共有________粒.
13.(2023·全国·高三专题练习)某同学设想用“高个子系数k”来刻画成年男子的高个子的程度,他认为,成年男子身高160及其以下不算高个子,其高个子系数k应为0;身高190及其以上的是理所当然的高个子,其高个子系数k应为1,请给出一个符合该同学想法 合理的成年男子高个子系数k关于身高的函数关系式___________.
14.(2021·全国·高一专题练习)2020年11月23日国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,脱贫攻坚取得重大突破、为了使扶贫工作继续推向深入,2021年某原贫困县对家庭状况较困难的农民实行购买农资优惠政策.
(1)若购买农资不超过2000元,则不给予优惠;
(2)若购买农资超过2000元但不超过5000元,则按原价给予9折优惠;
(3)若购买农资超过5000元,不超过5000元的部分按原价给予9折优惠,超过5000元的部分按原价给予7折优惠.
该县家境较困难的一户农民预购买一批农资,有如下两种方案:
方案一:分两次付款购买,实际付款分别为3150元和4850元;
方案二:一次性付款购买.
若采取方案二购买这批农资,则比方案一节省______元.
15.(2021·全国·高一课时练习)某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润与营运年数为二次函数关系(如图),则客车有营运利润的时间不超过________年.
16.(2021·广东·小榄中学高一阶段练习)为了引导居民节约用电,某城市对居民生活用电实行“阶梯电价”,按月用电量计算,将居民家庭每月用电量划分为三个阶梯,电价按阶梯递增.第一阶梯:月用电量不超过千瓦时的部分,电价为元/千瓦时;第二阶梯:月用电量超过千瓦时但不超过千瓦时的部分,电价为元/千瓦时;第三阶梯:月用电量超过千瓦时的部分,电价为元/千瓦时.若某户居民月份交纳的电费为元,则此户居民月份的用电量为___________千瓦时.
B组 能力提升
17.(2021·全国·高一课时练习)(多选题)甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y(km)与时间x(min)的关系,下列结论正确的是( )
A.甲同学从家出发到乙同学家走了60min
B.甲从家到公园的时间是30min
C.甲从家到公园的速度比从公园到乙同学家的速度快
D.当时,y与x的关系式为
E.当时,y与x的关系式为
18.(2021·全国·高一专题练习)(多选题)某工厂八年来某种产品总产量(即前年年产量之和)与时间(年)的函数关系如图,下列几种说法中正确的是( )
A.前三年中,总产量的增长速度越来越慢
B.前三年中,年产量的增长速度越来越慢
C.第三年后,这种产品停止生产
D.第三年后,年产量保持不变
19.(2021·全国·高一专题练习)(多选题)在某种金属材料的耐高温实验中,温度随着时间变化的情况由计算机记录后显示的图象如图所示.
则下列说法正确的是( )
A.前5min温度增加的速度越来越快
B.前5min温度增加的速度越来越慢
C.5min以后温度保持匀速增加
D.5min以后温度保持不变
20.(2022·全国·高一课时练习)(多选题)某商品A以每件2元的价格出售时,销售量为10万件.经过调查,单价每提高0.2元,销售量减少5000件,要使商品A销售总收入不少于22.4万元,该商品A的单价可定为( )
A.2.6元 B.2.8元 C.3元 D.3.2元
21.(2021·全国·高一专题练习)(多选)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用y1(千元) 乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲 乙所示,则( )
A.甲厂的制版费为1千元,印刷费平均每个为0.5元
B.甲厂的总费用y1与证书数量x之间的函数关系式为
C.当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元
D.当印制证书数量超过2千个时,乙厂的总费用y2与证书数量x之间的函数关系式为
22.(2022·全国·高一课时练习)(多选题)已知每生产100克饼干的原材料加工费为1.8元,某食品加工厂对饼干采用两种包装,其包装费用、销售价格如表所示:
型号 小包装 大包装
质量 100克 300克
包装费 0.5元 0.7元
销售价格 3.00元 8.4元
则下列说法正确的是( )A.买小包装实惠
B.买大包装实惠
C.卖3小包比卖1大包盈利多
D.卖1大包比卖3小包盈利多
23.(2021·全国·高一专题练习)(多选题)甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量(个)与加工时间(分)之间的函数关系,点横坐标为12,点坐标为点横坐标为128.则下面说法中正确的是( )
A.甲每分钟加工的零件数量是5个 B.在60分钟时,甲比乙多加工了120个零件
C.点的横坐标是200 D.的最大值是216
24.(2021·全国·高一课时练习)(多选题)“双11”购物节中,某电商对顾客实行购物优惠活动,规定一次购物付款总额满一定额度,可以给予优惠:
(1)如果购物总额不超过50元,则不给予优惠;
(2)如果购物总额超过50元但不超过100元,可以使用一张5元优惠券;
(3)如果购物总额超过100元但不超过300元,则按标价给予9折优惠;
(4)如果购物总额超过300元,其中300元内的按第(3)条给予优惠,超过300元的部分给予8折优惠.
某人购买了部分商品,则下列说法正确的是( )
A.如果购物时一次性全部付款99元,则购物总额为104元
B.如果购物总额为228元,则应付款为205.2元
C.如果购物总额为368元,则应付款为294.4元
D.如果购物时一次性全部付款442.8元,则购物总额为516元
25.(2021·全国·高一课时练习)(多选题)某工厂八年来产品累积产量C(即前t年年产量之和)与时间t(年)的函数如图,下列四种说法中正确的是( )
A.前三年中,产量增长的速度越来越快 B.前三年中,产量增长的速度越来越慢
C.第三年后,这种产品停止生产 D.第三年后,年产量保持不变
26.(2021·全国·高一专题练习)(多选题)某公司一年购买某种货物900吨,现分次购买,若每次购买x吨,运费为9万元/次,一年的总储存费用为4x万元,要使一年的总运费与总储存费用之和最小,则下列说法正确的是( )
A.时费用之和有最小值 B.时费用之和有最小值
C.最小值为万元 D.最小值为万元
27.(2021·全国·高一课时练习(多选题))某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用(千元)乙厂的总费用(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示,则( )
A.甲厂的制版费为1千元,印刷费平均每个为0.5元
B.甲厂的费用与证书数量x之间的函数关系式为
C.当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元
D.当印制证书数量超过2千个时,乙厂的总费用与证书数量x之间的函数关系式为
E.若该单位需印制证书数量为8千个,则该单位选择甲厂更节省费用
28.(2022·全国·高一单元测试)吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产万盒,需投入成本万元,当产量小于或等于50万盒时;当产量大于50万盒时,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)
(1)求“冰墩墩”玩具手办销售利润(万元)关于产量(万盒)的函数关系式;
(2)当产量为多少万盒时,该企业在生产中所获利润最大?
29.(2022·全国·高一单元测试)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v(单位:千克/年)表示为养殖密度x(单位:尾/立方米)的函数.当时,v的值为2;当时,v是关于x的一次函数.当x=20时,因缺氧等原因,v的值为0.
(1)当时,求函数的表达式;
(2)当x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
30.(2019·福建·厦门双十中学高一开学考试)如图,某日的钱塘江观测信息如下:2017年月日,天气:阴;能见度:1.8千米;时,甲地“交叉潮”形成,潮水匀速奔向乙地;时,潮头到达乙地,形成“一线潮”,开始均匀加速,继续向西;时,潮头到达丙地,遇到堤坝阻挡后回头,形成“回头潮”.
按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离(千米)与时间(分钟)的函数关系用图3表示.其中:“时甲地‘交叉潮’的潮头离乙地12千米”记为点,点坐标为,曲线可用二次函数:,是常数)刻画.
(1)求值,并求出潮头从甲地到乙地的速度;
(2)时,小红骑单车从乙地出发,沿江边公路以0.48千米分的速度往甲地方向去看潮,问她几分钟与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度,是加速前的速度)
31.(2022·黑龙江·哈尔滨三中高二期末)随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)所满足的关系式:.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.
(1)若车流速度不小于40千米/小时,求车流密度的取值范围;
(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:)
32.(2023·全国·高三专题练习)第24届冬季奥林匹克运动会,又称2022年北京冬季奥运会,是由中国举办的国际性奥林匹克赛事,于2022年2月4日开幕,2月20日闭幕.本届奥运会共设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目和自由式滑雪大跳台,延庆赛区承办雪车 雪橇及高山滑雪项目,张家口赛区承办除雪车 雪橇 高山滑雪和自由式滑雪大跳台之外的所有雪上项目,冬奥会的举办可以带动了我国3亿人次的冰雪产业,这为冰雪设备生产企业带来了新的发展机遇,某冰雪装备器材生产企业,生产某种产品的年固定成本为2000万元,每生产x千件,需另投入成本(万元).经计算若年产量x千件低于100千件,则这x千件产品成本;若年产量x千件不低于100千件时,则这x千件产品成本.每千件产品售价为100万元,为了简化运算我们假设该企业生产的产品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?
33.(2022·上海金山·二模)经过市场调研发现,某公司生产的某种时令商品在未来一个月(30天)内的日销售量(百件)与时间第天的关系如下表所示:
第天 1 3 10 30
日销售量(百件) 2 3
未来30天内,受市场因素影响,前15天此商品每天每件的利润(元)与时间第天的函数关系式为,且为整数,而后15天此商品每天每件的利润元与时间第天的函数关系式为(,且为整数).
(1)现给出以下两类函数模型:①(为常数);②为常数,且.分析表格中的数据,请说明哪类函数模型更合适,并求出该函数解析式;
(2)若这30天内该公司此商品的日销售利润始终不能超过4万元,则考虑转型.请判断该公司是否需要转型?并说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
突破3.4 函数的应用(一)
A组 基础巩固
1.(2017·河北张家口·高一阶段练习)同班同村的两同学小强、小红某次上学所走路程与时间的函数关系如图所示,则下列说法正确的是
A.小强比小红走的路程多 B.小强比小红先到达终点
C.小强、小红两人的平均速度相同 D.小红比小强后出发
【答案】B
【详解】从图中直线的看出: 小强大于小红的平均速度,
小强比小红后出发,跑了相同的路程,小强先与小红到达.
故选B.
2.(2020·重庆市育才中学高一开学考试)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从地出发前往地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发分钟.乙骑行分钟后,甲以原速的继续骑行,经过一段时间,甲先到达地,乙一直保持原速前往地.在此过程中,甲、乙两人相距的路程(单位:米)与乙骑行的时间(单位:分钟)之间的关系如图所示,则下列说法错误的是( )
A.乙的速度为米/分钟 B.分钟后甲的速度为米/分钟
C.乙比甲晚分钟到达地 D.、两地之间的路程为米
【答案】C
【分析】首先由图象确定甲乙两人的速度,再求出甲到达地时乙距离的的距离,计算甲的总路程即为、两地之间的路程,进而可判断各个选项的正确性,即可得正确答案.
【详解】因为乙比甲早出发分钟,由图知:乙的速度为米/分钟,故选项A正确;
设甲的原速度为,因为,解得:米/分钟,
所以分钟后甲的速度为米/分钟,故选项B正确;
当时,甲到达地,此时乙距离地还有米,所以还需要分钟,所以乙比甲晚分钟到达地,故选项C
不正确;
、两地之间的路程为米,故选项D正确;
所以说法错误的是选项C,
故选:C.
3.(2021·重庆合川·高二阶段练习)甲、乙两人走过的路程s1(t),s2(t)与时间t的关系如图,则在[0,t0]这个时间段内,甲、乙两人的平均速度v甲,v乙的关系是( )
A.v甲>v乙 B.v甲<v乙
C.v甲=v乙 D.大小关系不确定
【答案】B
【分析】利用平均变化率的几何意义即可得出选项.
【详解】设直线AC,BC的斜率分别为kAC,kBC,
由平均变化率的几何意义知,
s1(t)在[0,t0]上的平均变化率v甲=kAC,
s2(t)在[0,t0]上的平均变化率v乙=kBC.
因为kAC<kBC,所以v甲<v乙.
故选:B
故选:B
4.(2022·湖南·高一课时练习)向高为H的水瓶内注水,一直到注满为止,如果注水量V与水深h的函数图象如图所示,那么水瓶的形状大致是( )
A. B. C. D.
【答案】B
【分析】从所给函数的图象可以看出,V不是h的正比例函数,由体积公式可排除D选项;从函数图象的单调性及切线的斜率的变化情况看,又可排除A、C选项,从而可得正确答案.
【详解】解:当容器是圆柱时,容积V=πr2h,r不变,V是h的正比例函数,其图象是过原点的直线,∴选项D不满足条件;
由函数图象可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,
∴容器平行于底面的截面半径由下到上逐渐变小,
∴A、C不满足条件,而B满足条件.
故选:B.
5.(2021·全国·高一课时练习)某产品的总成本y万元与产量x(台)之间的关系是, ,若每台产品的售价为9万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )
A.3台 B.5台 C.6台 D.10台
【答案】A
【分析】依题意利用 解出x的值,再结合x的取值范围,即得结果.
【详解】解:依题意, ,即,
解得或 (舍去),∵,∴.
∴生产者不亏本(销售收入不小于总成本)时的最低产量是3(台).
故选:A.
6.(2021·全国·高一专题练习)某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )
A.0.33米 B.0.42米 C.0.39米 D.0.43米
【答案】B
【分析】根据到1.84米得90分,先求得该女生训练前立定跳远距离,再求得训练后立定跳远距离,两者相减即可.
【详解】该女生训练前立定跳远距离为(米),
训练后立定跳远距离为(米),
则该女生训练后,立定跳远距离增加了(米).
故选:B.
7.(2021·全国·高一专题练习)规定从甲地到乙地通话 min的电话费由(元)决定,其中>0,[]是大于或等于的最小整数,如[2]=2,[2.7]=3,[2.1]=3,则从甲地到乙地通话时间为4.5 min的电话费为( )元
A.4.8 B.5.2 C.5.6 D.6
【答案】C
【分析】计算,代入函数,计算即得结果.
【详解】由,得.
故选:C.
8.(2022·新疆·乌苏市第一中学高二期中(理))某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益与年产量的关系式,则总利润最大时,每年生产的产品数量是__________.
【答案】300
【分析】利用总收益与成本的差可得总利润关于的解析式,利用分段函数的性质,分别求出两段函数的最值,从而可得结果.
【详解】设总成本为元,总利润为元,则,
P=R-C=所以=
令,得=300.当0< <300时,;当>300时,.所以当=300时,取得最大值.
故答案为:300.
9.(2022·广东揭阳·高一期末)已知[x]表示不超过x的最大整数,定义函数f(x)=x-[x].有下列结论:
①函数的图象是一条直线;②函数f(x)的值域为[0,1);③方程f(x)=有无数个解;④函数是R上的增函数.其中正确的是____.(填序号)
【答案】②③##③②
【分析】画出的图象,即可判断四个选项的正误.
【详解】画出函数的图象,如图所示,可以看出函数的图象不是一条直线,故A错误;函数f(x)的值域为,故②正确;方程有无数个解,③正确;函数是分段函数,且函数不是R上的增函数,故④错误.
故答案为:②③
10.(2021·全国·高一课时练习)某青年旅社有200张床位,若每床每晚的租金为50元,则可全部出租;若将出租费标准每晚提高10的整数倍,则出租的床位会减少10的相应倍数张.若要使该旅社每晚的收入超过1.2万元,则每个床位的定价的取值范围是___________;
【答案】
【分析】设每床每晚的租金提高10的倍,由题意可得,解不等式可得的范围,再计算每个床位的定价的取值范围即可求解.
【详解】设每床每晚的租金提高10的倍,即为元,
出租的床位会减少10的倍张,即为张,
由题意可得该旅社每晚的收入为,
整理可得:
解得:,
因为,所以,
此时每个床位的定价,
所以每个床位的定价的取值范围是,
故答案为:.
11.(2021·全国·高一专题练习)已知甲、乙两地相距.根据交通法规,两地之间的车速应限制在.假设油价是7元/,某汽车以的速度行驶,其耗油量为,司机每小时的工资是35元.如果不考虑其他费用,那么该汽车从甲地到乙地的总费用最低是____元,此时车速是___.
【答案】 210; 60
【分析】根据题意写出总费用关于x的函数解析式,再运用导数求函数最值即可得出答案.
【详解】设汽车从甲地到乙地的总费用为函数,根据题意可写出函数的解析式为:
当时,, 在上为单调减函数,在 上为单调增函数
当时,取得最小值,
故答案为: 210; 60.
12.(2021·全国·高一专题练习)现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取粒红豆,乙每次取粒白豆,同时进行,当红豆取完时,白豆还剩粒;第二轮,甲每次取粒红豆,乙每次取粒白豆,同时进行,当白豆取完时,红豆还剩粒.则红豆和白豆共有________粒.
【答案】
【分析】设红豆有粒,白豆有粒,由两轮的结果可构造方程组,根据的范围可计算求得,加和即可得到结果.
【详解】设红豆有粒,白豆有粒,
由第一轮结果可知:,整理可得:;
由第二轮结果可知:,整理可得:;
当时,由得:(舍);
当时,由得:(舍);
当时,由得:,,
即红豆和白豆共有粒.
故答案为:.
13.(2023·全国·高三专题练习)某同学设想用“高个子系数k”来刻画成年男子的高个子的程度,他认为,成年男子身高160及其以下不算高个子,其高个子系数k应为0;身高190及其以上的是理所当然的高个子,其高个子系数k应为1,请给出一个符合该同学想法 合理的成年男子高个子系数k关于身高的函数关系式___________.
【答案】,(只要写出的函数满足在区间上单调递增,且过点和即可.答案不唯一)
【分析】由题意,个数越高,系数越大,因此在上的函数是增函数即可,初始值,,设出函数式代入求解.
【详解】由题意函数是上的增函数,设,,
由,解得,所以,
所以
故答案为:
注:在上设其他函数式也可以,只要是增函数,只有两个参数.如,等等.
【点睛】思路点睛:本题考查函数的应用,解题时注意题目的要求,只要写出的函数满足在区间上单调递增,且过点和即可,因此函数模型可以很多,答案也不唯一.
14.(2021·全国·高一专题练习)2020年11月23日国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,脱贫攻坚取得重大突破、为了使扶贫工作继续推向深入,2021年某原贫困县对家庭状况较困难的农民实行购买农资优惠政策.
(1)若购买农资不超过2000元,则不给予优惠;
(2)若购买农资超过2000元但不超过5000元,则按原价给予9折优惠;
(3)若购买农资超过5000元,不超过5000元的部分按原价给予9折优惠,超过5000元的部分按原价给予7折优惠.
该县家境较困难的一户农民预购买一批农资,有如下两种方案:
方案一:分两次付款购买,实际付款分别为3150元和4850元;
方案二:一次性付款购买.
若采取方案二购买这批农资,则比方案一节省______元.
【答案】700
【分析】根据方案一先判断出两次实际付款元与元对应的原价,然后根据两次的原价可计算出方案二的实际付款,由此可计算出所节省的钱.
【详解】因为且,所以实际付款元对应的原价为元,
又因为,所以实际付款元对应的原价大于元,
设实际付款元对应的原价为元,
所以,解得,
所以两次付款的原价之和为:元,
若按方案二付款,则实际付款为:元,
所以节省的钱为:元,
故答案为:.
【点睛】关键点点睛:解答本题的关键是通过两次实际的付款去计算原价,其中要注意根据实际付款的金额先判断购买农资金额的范围,然后再根据优惠政策去计算.
15.(2021·全国·高一课时练习)某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润与营运年数为二次函数关系(如图),则客车有营运利润的时间不超过________年.
【答案】7
【分析】确定函数解析式,解不等式,即可得到结论.
【详解】设二次函数y=a(x-6)2+11,
又过点(4,7),
所以a=-1,即y=-(x-6)2+11.
解y≥0,得6-≤x≤6+,
所以有营运利润的时间为2.
又6<2<7,所以有营运利润的时间不超过7年.
故答案为:7
16.(2021·广东·小榄中学高一阶段练习)为了引导居民节约用电,某城市对居民生活用电实行“阶梯电价”,按月用电量计算,将居民家庭每月用电量划分为三个阶梯,电价按阶梯递增.第一阶梯:月用电量不超过千瓦时的部分,电价为元/千瓦时;第二阶梯:月用电量超过千瓦时但不超过千瓦时的部分,电价为元/千瓦时;第三阶梯:月用电量超过千瓦时的部分,电价为元/千瓦时.若某户居民月份交纳的电费为元,则此户居民月份的用电量为___________千瓦时.
【答案】
【解析】根据题意,写出电费与用电量的函数关系式,根据函数值即可求解.
【详解】设用电量为千瓦时,电费元,
,
若时。
当时,则,解得,不满足题意;
当时,则,
解得,不满足题意;
当时,则,解得,满足题意.故答案为:
B组 能力提升
17.(2021·全国·高一课时练习)(多选题)甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y(km)与时间x(min)的关系,下列结论正确的是( )
A.甲同学从家出发到乙同学家走了60min
B.甲从家到公园的时间是30min
C.甲从家到公园的速度比从公园到乙同学家的速度快
D.当时,y与x的关系式为
E.当时,y与x的关系式为
【答案】BD
【解析】分析函数图象,即可判断正误.
【详解】解:在中,甲在公园休息的时间是10min,所以只走了50min,错误;
由题中图象知,正确;
甲从家到公园所用的时间比从公园到乙同学家所用的时间长,而距离相等,所以甲从家到公园的速度比从公园到乙同学家的速度慢,错误;
当时,设,则,解得,正确;
当时,题中图象是平行于轴的线段,错误.
故选:.
【点睛】本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于基础题.
18.(2021·全国·高一专题练习)(多选题)某工厂八年来某种产品总产量(即前年年产量之和)与时间(年)的函数关系如图,下列几种说法中正确的是( )
A.前三年中,总产量的增长速度越来越慢
B.前三年中,年产量的增长速度越来越慢
C.第三年后,这种产品停止生产
D.第三年后,年产量保持不变
【答案】AC
【分析】根据函数图像依次分析各选项即可得答案.
【详解】由题中函数图像可知,在区间上,图像是凸起上升的,表明总产量的增长速度越来越慢,A正确,
由总产量增长越来越慢知,年产量逐年减小,因此B错误,
在上,图像是水平直线,表明总产量保持不变,即年产量为,因此C正确,D错误.
故选:AC
19.(2021·全国·高一专题练习)(多选题)在某种金属材料的耐高温实验中,温度随着时间变化的情况由计算机记录后显示的图象如图所示.
则下列说法正确的是( )
A.前5min温度增加的速度越来越快
B.前5min温度增加的速度越来越慢
C.5min以后温度保持匀速增加
D.5min以后温度保持不变
【答案】BD
【分析】根据图象特征即可判断.
【详解】因为温度y关于时间t的图象是先凸后平,即前5min每当t增加一个单位增量Δt,则y相应的增量Δy越来越小,而5min后是y关于t的增量保持为0,则BD正确.
故选:BD.
20.(2022·全国·高一课时练习)(多选题)某商品A以每件2元的价格出售时,销售量为10万件.经过调查,单价每提高0.2元,销售量减少5000件,要使商品A销售总收入不少于22.4万元,该商品A的单价可定为( )
A.2.6元 B.2.8元 C.3元 D.3.2元
【答案】BCD
【分析】根据题意设出商品A的单价为元,用含有的式子表示商品A销售总收入,列出不等式求解即可.
【详解】设商品A的单价为元,则销量为万件,此时商品A销售总收入为万元,
根据题意有,解得,故BCD符合题意.
故选:BCD
21.(2021·全国·高一专题练习)(多选)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用y1(千元) 乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲 乙所示,则( )
A.甲厂的制版费为1千元,印刷费平均每个为0.5元
B.甲厂的总费用y1与证书数量x之间的函数关系式为
C.当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元
D.当印制证书数量超过2千个时,乙厂的总费用y2与证书数量x之间的函数关系式为
【答案】ABCD
【分析】根据甲厂和乙厂的函数图象,结合一次函数的图象与性质,结合待定系数法,即可求解.
【详解】由题图知甲厂制版费为1千元,印刷费平均每个为0.5元,故A正确;
设甲厂的费用与证书数量满足的函数关系式为,
代入点,可得,解得,
所以甲厂的费用与证书数量满足的函数关系式为,故B正确;
当印制证书数量不超过2千个时,乙厂的印刷费平均每个为元,故C正确;
设当时,设与之间的函数关系式为
代入点,可得,解得,
所以当时,与之间的函数关系式为,故D正确.
故选:ABCD.
22.(2022·全国·高一课时练习)(多选题)已知每生产100克饼干的原材料加工费为1.8元,某食品加工厂对饼干采用两种包装,其包装费用、销售价格如表所示:
型号 小包装 大包装
质量 100克 300克
包装费 0.5元 0.7元
销售价格 3.00元 8.4元
则下列说法正确的是( )A.买小包装实惠
B.买大包装实惠
C.卖3小包比卖1大包盈利多
D.卖1大包比卖3小包盈利多
【答案】BD
【分析】根据题中数据,可换算出每100克的售价,比较即可判断A、B的正误;分别算出卖1大包的盈利和卖3小包的盈利,比较即可判断C、D的正误,即可得答案.
【详解】大包装300克8.4元,则等价为100克2.8元,小包装100克3元,则买大包装实惠,故B正确,
卖1大包的盈利8.4-0.7-1.8×3=2.3(元),卖1小包盈利3-0.5-1.8=0.7(元),则卖3小包盈利0.7×3=2.1(元),则卖1大包比卖3小包盈利多,故D正确.
故选:BD
23.(2021·全国·高一专题练习)(多选题)甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量(个)与加工时间(分)之间的函数关系,点横坐标为12,点坐标为点横坐标为128.则下面说法中正确的是( )
A.甲每分钟加工的零件数量是5个 B.在60分钟时,甲比乙多加工了120个零件
C.点的横坐标是200 D.的最大值是216
【答案】ACD
【分析】甲每分钟加工的数量是,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)个零件,所以选项B错误;设的坐标为,由题得,则有,解可得,所以选项C正确;当时,,所以的最大值是216.所以选项D正确.
【详解】根据题意,甲一共加工的时间为分钟,
一共加工了600个零件,则甲每分钟加工的数量是,所以选项A正确,
设的坐标为,
在区间和,20 上,都是乙在加工,则直线和的斜率相等,
则有,
在区间和上,甲乙同时加工,同理可得,
则,
则有,解可得;
即点的坐标是,所以选项C正确;
由题得乙每分钟加工的零件数为个,
所以甲每分钟比乙多加工5-3=2个,
在60分钟时,甲比乙多加工了(60-20)个零件,所以选项B错误;
当时,,所以的最大值是216.所以选项D正确.
故选:ACD
24.(2021·全国·高一课时练习)(多选题)“双11”购物节中,某电商对顾客实行购物优惠活动,规定一次购物付款总额满一定额度,可以给予优惠:
(1)如果购物总额不超过50元,则不给予优惠;
(2)如果购物总额超过50元但不超过100元,可以使用一张5元优惠券;
(3)如果购物总额超过100元但不超过300元,则按标价给予9折优惠;
(4)如果购物总额超过300元,其中300元内的按第(3)条给予优惠,超过300元的部分给予8折优惠.
某人购买了部分商品,则下列说法正确的是( )
A.如果购物时一次性全部付款99元,则购物总额为104元
B.如果购物总额为228元,则应付款为205.2元
C.如果购物总额为368元,则应付款为294.4元
D.如果购物时一次性全部付款442.8元,则购物总额为516元
【答案】BD
【分析】设购物总额为元,应付款元,根据题意求出的解析式,再根据解析式对四个选项逐个分析可得答案.
【详解】设购物总额为元,应付款元,
则,
即,
对于A,若元,则只能是,解得元,即购物总额为元,故A不正确;
对于B,当元时,元,即应付款为205.2元,故B正确;
对于C,当元时,元,即应付款为元,故C不正确;
对于D,若元,则只能是,解得元,即购物总额为元,故D正确.
故选:BD
25.(2021·全国·高一课时练习)(多选题)某工厂八年来产品累积产量C(即前t年年产量之和)与时间t(年)的函数如图,下列四种说法中正确的是( )
A.前三年中,产量增长的速度越来越快 B.前三年中,产量增长的速度越来越慢
C.第三年后,这种产品停止生产 D.第三年后,年产量保持不变
【答案】BC
【解析】利用函数的图象,结合问题的实际意义,即可求解.
【详解】由函数图象可知,
在区间[0,3]上,图象凸起上升的,表明年产量增长速度越来越慢;
在区间(3,8]上,如果图象是水平直线,表明总产量保持不变,即年产量为0.
B、C正确
故选:BC
【点睛】本题主要考查了函数图象的应用,考查了数形结合的思想,属于中档题.
26.(2021·全国·高一专题练习)(多选题)某公司一年购买某种货物900吨,现分次购买,若每次购买x吨,运费为9万元/次,一年的总储存费用为4x万元,要使一年的总运费与总储存费用之和最小,则下列说法正确的是( )
A.时费用之和有最小值 B.时费用之和有最小值
C.最小值为万元 D.最小值为万元
【答案】BD
【分析】利用函数的思想列出一年的总费用与总存储费用之和,再结合基本不等式得到一个不等关系即可求最值.
【详解】一年购买某种货物900吨,若每次购买x吨,则需要购买次,运费是9万元/次,
一年的总储存费用为万元,
所以一年的总运费与总储存费用之和为,
因为,
当且仅当,即时,等号成立,
所以当时,一年的总运费与总储存费用之和最小为万元,
故选:BD
【点睛】本题主要考查了函数最值的应用,以及函数模型的选择,和基本不等式的应用,属于中档题.
27.(2021·全国·高一课时练习(多选题))某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用(千元)乙厂的总费用(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示,则( )
A.甲厂的制版费为1千元,印刷费平均每个为0.5元
B.甲厂的费用与证书数量x之间的函数关系式为
C.当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元
D.当印制证书数量超过2千个时,乙厂的总费用与证书数量x之间的函数关系式为
E.若该单位需印制证书数量为8千个,则该单位选择甲厂更节省费用
【答案】ABCD
【分析】对于A、B结合图像便可看出是关于的一次函数,从图中可以观察出甲厂的制版费为1千元,一次函数的斜率为即为证书的单价;
对于C,用2到6千个的费用除以证件个数计算即可得解;
对于D,设函数解析式后用待定系数法解答即可;
对于E,分别求出甲乙两车的费用关于证书个数的函数,将分别代入两个函数,可得出选项乙厂可省元;
【详解】由题图知甲厂制版费为1千元,印刷费平均每个为0.5元,故A正确;
甲厂的费用与证书数量x满足的函数关系为,故B正确;
当印制证书数量不超过2千个时,乙厂的印刷费平均每个为元,故C正确;
易知当时,与x之间的函数关系式为,故D正确
当时,,因为,所以当印制8千个证书时,选择乙厂更节省费用,故E不正确.
故选ABCD
【点睛】本题考查图像辨析题,需分别求出两个函数表达式,属于基础题.
28.(2022·全国·高一单元测试)吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产万盒,需投入成本万元,当产量小于或等于50万盒时;当产量大于50万盒时,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)
(1)求“冰墩墩”玩具手办销售利润(万元)关于产量(万盒)的函数关系式;
(2)当产量为多少万盒时,该企业在生产中所获利润最大?
【答案】(1)
(2)70万盒
【分析】(1)根据题意分和两种情况求解即可;
(2)根据分段函数中一次与二次函数的最值求解即可.
(1)当产量小于或等于50万盒时,,当产量大于50万盒时,,故销售利润(万元)关于产量(万盒)的函数关系式为
(2)当时,;当时,,当时,取到最大值,为1200. 因为,所以当产量为70万盒时,该企业所获利润最大.
29.(2022·全国·高一单元测试)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v(单位:千克/年)表示为养殖密度x(单位:尾/立方米)的函数.当时,v的值为2;当时,v是关于x的一次函数.当x=20时,因缺氧等原因,v的值为0.
(1)当时,求函数的表达式;
(2)当x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
【答案】(1)
(2)x=10,最大值为12.5千克/立方米
【分析】(1)根据题意得建立分段函数模型求解即可;
(2)分段求得函数的最值,比较可得答案.
(1)依题意,当时,;当时,是关于x的一次函数,假设,则,解得,所以.
(2)当时,;当时,,当时,取得最大值.因为,所以当x=10时,鱼的年生长量可以达到最大,最大值为12.5.
30.(2019·福建·厦门双十中学高一开学考试)如图,某日的钱塘江观测信息如下:2017年月日,天气:阴;能见度:1.8千米;时,甲地“交叉潮”形成,潮水匀速奔向乙地;时,潮头到达乙地,形成“一线潮”,开始均匀加速,继续向西;时,潮头到达丙地,遇到堤坝阻挡后回头,形成“回头潮”.
按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离(千米)与时间(分钟)的函数关系用图3表示.其中:“时甲地‘交叉潮’的潮头离乙地12千米”记为点,点坐标为,曲线可用二次函数:,是常数)刻画.
(1)求值,并求出潮头从甲地到乙地的速度;
(2)时,小红骑单车从乙地出发,沿江边公路以0.48千米分的速度往甲地方向去看潮,问她几分钟与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度,是加速前的速度)
【答案】(1),千米分钟;
(2)小红5分钟后与潮头相遇;
(3)小红与潮头相遇到潮头离她1.8千米外共需26分钟.
【分析】(1)根据给定时间及坐标系求出m,再计算速度作答.
(2)求出小红从乙地出发时潮头离乙地的距离,设出从出发到与潮头相遇的时间,列方程求解作答.
(3)根据给定数据求出s与t的函数关系,求出小红追赶潮头距离乙地的距离与t的关系,由相距1.8千米列出方程,求解作答.
(1)到的时间是30分钟,则,即,潮头从甲地到乙地的速度(千米分钟).
(2)因潮头的速度为0.4千米分钟,则到时,潮头已前进(千米),此时潮头离乙地(千米),设小红出发分钟与潮头相遇,于是得,解得,所以小红5分钟后与潮头相遇.
(3)把,代入,得,解得,,因此,又,则,当潮头的速度达到单车最高速度0.48千米分,即时,,解得,则当时,,即从分钟时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以0.48千米分的速度匀速追赶潮头,设小红离乙地的距离为,则与时间的函数关系式为,当时,,解得:,因此有,最后潮头与小红相距1.8千米,即时,有,解得,(舍去),于是有,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时(分钟),因此共需要时间为(分钟),所以小红与潮头相遇到潮头离她1.8千米外共需26分钟.
31.(2022·黑龙江·哈尔滨三中高二期末)随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)所满足的关系式:.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.
(1)若车流速度不小于40千米/小时,求车流密度的取值范围;
(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:)
【答案】(1)车流密度的取值范围是
(2)隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.
【分析】(1)根据题意得,再根据分段函数解不等式即可得答案;
(2)由题意得,再根据基本不等式求解最值即可得答案.
(1)
解:由题意知当(辆/千米)时,(千米/小时),
代入,解得,
所以.
当时,,符合题意;
当时,令,解得,所以.
所以,若车流速度不小于40千米/小时,则车流密度的取值范围是.
(2)
解:由题意得,
当时,为增函数,所以,当时等号成立;
当时,
.
当且仅当,即时等号成立.
所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.
32.(2023·全国·高三专题练习)第24届冬季奥林匹克运动会,又称2022年北京冬季奥运会,是由中国举办的国际性奥林匹克赛事,于2022年2月4日开幕,2月20日闭幕.本届奥运会共设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目和自由式滑雪大跳台,延庆赛区承办雪车 雪橇及高山滑雪项目,张家口赛区承办除雪车 雪橇 高山滑雪和自由式滑雪大跳台之外的所有雪上项目,冬奥会的举办可以带动了我国3亿人次的冰雪产业,这为冰雪设备生产企业带来了新的发展机遇,某冰雪装备器材生产企业,生产某种产品的年固定成本为2000万元,每生产x千件,需另投入成本(万元).经计算若年产量x千件低于100千件,则这x千件产品成本;若年产量x千件不低于100千件时,则这x千件产品成本.每千件产品售价为100万元,为了简化运算我们假设该企业生产的产品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?
【答案】(1)
(2)当该企业年产量为105千件时,所获得利润最大,最大利润是1000万元
【分析】(1)年利润为销售收入减去生产成本,分情况讨论计算即可;(2)当时,根据二次函数单调性求最大值;当时,根据基本不等式求最大值,继而求出最大值.
(1)
当时,;
当时,.
所以
(2)
当时,.
当时,取得最大值,且最大值为950.
当时,当且仅当时,等号成立.
因为,所以当该企业年产量为105千件时,所获得利润最大,最大利润是1000万元.
33.(2022·上海金山·二模)经过市场调研发现,某公司生产的某种时令商品在未来一个月(30天)内的日销售量(百件)与时间第天的关系如下表所示:
第天 1 3 10 30
日销售量(百件) 2 3
未来30天内,受市场因素影响,前15天此商品每天每件的利润(元)与时间第天的函数关系式为,且为整数,而后15天此商品每天每件的利润元与时间第天的函数关系式为(,且为整数).
(1)现给出以下两类函数模型:①(为常数);②为常数,且.分析表格中的数据,请说明哪类函数模型更合适,并求出该函数解析式;
(2)若这30天内该公司此商品的日销售利润始终不能超过4万元,则考虑转型.请判断该公司是否需要转型?并说明理由.
【答案】(1)选择函数模型①,其解析式为(且为整数)
(2)这30天内日利润均未能超过4万元,该公司需要考虑转型,理由见解析
【分析】(1)将将以及分别代入对应的函数模型,求得对应的函数解析式,再代入计算判断是否满足即可;
(2)记日销售利润为,根据一次函数与二次函数的单调性分析的最大值,判断与4万元的大小关系判断即可
(1)
若选择模型(1),将以及代入可得
解得,即,经验证,符合题意;
若选择模型(2),将以及代入可得,
解得,即,
当时,,故此函数模型不符题意,
因此选择函数模型(1),其解析式为(且为整数)
(2)
记日销售利润为,
当且为整数时,,
对称轴,故当时,利润取得最大值,且最大值为392(百元)
当且为整数时,,
当时,利润单调递减,
故当时取得最大值,且最大值为(百元)
所以,这30天内日利润均未能超过4万元,该公司需要考虑转型.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)