中小学教育资源及组卷应用平台
第二十一章《一元二次方程》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一.选择题(共10小题,每题3分,共30分)
1.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )
A.q<16 B.q>16 C.q≤4 D.q≥4
2.关于y的方程my(y-1)=ny(y+1)+2化成一般形式后为y2-y-2=0,则m、n的值依次是( )
A.1,0 B.0,1 C.-1,0 D.0,-1
3.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为( )
A.-1或4 B.-1或-4 C.1或-4 D.1或4
4.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于( )
A.1 B.0 C.﹣1 D.2
5.若方程x2﹣5x﹣1=0的两根为x1、x2,则+的值为( )
A.5 B. C.﹣5 D.
6. 已知(m2+n2)(m2+n2+2)-8=0,则m2+n2的值为( )
A. -4或2 B .-2或4 C. 4 D. 2
7.已知三角形的两边长为4和5,第三边的长是方程x2﹣5x+6=0的一个根,则这个三角形的周长是( )
A.11 B.12 C.11或12 D.15
8.已知a+,则的值为( )
A.﹣1 B.1 C.2 D.不能确定
9.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是( )
A.300(1+x)=507 B.300(1+x)2=507
C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=507
10.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?( )
A.4 B.5 C.6 D.7
二、填空题(每题3分,共24分)
11.若x2﹣mx﹣15=(x+3)(x+n),则nm的值为______.
12.方程(x﹣2)2﹣25x2=0用______法较简便,方程的根为x1=______,x2=______.
13.若一元二次方程(m﹣1)x2+4x+3=0有两个实数根,则m的取值范围是 .
14.已知一元二次方程x2+x﹣2021=0的两根分别为m,n,则+的值为 .
15.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根为x1,x2,使得x1x2﹣x12﹣x22=﹣16成立,则k的值 .
16.如果m、n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2021= .
17.若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为 .
18.一个长100 m,宽60 m的游泳池扩建成一个周长为600 m的大型水上游乐场,把游泳池的长增加x m,那么x等于多少时,水上游乐场的面积为20 000 m2?列出方程__________________________.
三.解答题(共46分,19题6分,20 ---24题8分)
19.解方程:
(1)x2+2x﹣3=0; (2)2(5x﹣1)2=5(5x﹣1);
(3)(x+3)2﹣(2x﹣3)2=0; (4)3x2﹣4x﹣1=0.
20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.
21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.
22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.
23.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
24.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,我县某快递公司,今年八月份与十月份完成投递的快递总件数分别为万件和万件.现假定该公司每月投递的快递总件数的增长率相同;
求该快递公司投递总件数的月平均增长率.
如果平均每人每月最多可投递万件.那么该公司现有的名快递投递业务员能否完成今年十一月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
参考答案与试题解析
1. 选择题(共10小题)
题号 1 2 3 4 5 6 7 8 9 10
答案 A A C A C B B C D A
二.填空题(共8小题)
11.若x2﹣mx﹣15=(x+3)(x+n),则nm的值为 25 .
【解答】解:原式可化为x2﹣mx﹣15=x2+(3+n)x+3n,
∴,
解得,
∴nm=(﹣5)2=25.
故填25.
12.方程(x﹣2)2﹣25x2=0用 因式分解 法较简便,方程的根为x1= ,x2= ﹣ .
【解答】解:分解因式得:(x﹣2+5x)(x﹣2﹣5x)=0,
x﹣2+5x=0,x﹣2﹣5x=0,
x1=,x2=﹣,
即解此方程用因式分解法比较简便,
故答案为:因式分解,;﹣.
13.解:根据题意得m﹣1≠0且Δ=42﹣4(m﹣1)×3≥0,
解得m≤且m≠1.
故答案为m≤且m≠1.
14.解:∵一元二次方程x2+x﹣2021=0的两根分别为m,n,
∴m+n=﹣1,mn=﹣2021,
∴+===,
故答案为:.
15.解:∵关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根,
∴△=(2k+1)2﹣4(k2+2k)≥0,
解得k≤,
由根与系数的关系得x1+x2=2k+1,x1x2=k2+2k,
∵x1x2﹣x12﹣x22=﹣16.
∴x1x2﹣[(x1+x2)2﹣2x1x2]=﹣16,
即﹣(x1+x2)2+3x1 x2=﹣16,
∴﹣(2k+1)2+3(k2+2k)=﹣16,
整理得k2﹣2k﹣15=0,
解得k1=5(舍去),k2=﹣3.
∴k=﹣3,
故答案为﹣3.
16.解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,
所以m,n是x2﹣x﹣3=0的两个不相等的实数根,
则根据根与系数的关系可知:m+n=1,mn=﹣3,
又n2=n+3,
则2n2﹣mn+2m+2021
=2(n+3)﹣mn+2m+2021
=2n+6﹣mn+2m+2021
=2(m+n)﹣mn+2027
=2×1﹣(﹣3)+2027
=2+3+2027
=2032.
故答案为:2032.
17.解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,
∴满足条件的方程可以为:x2﹣2=0(答案不唯一),
故答案为:x2﹣2=0(答案不唯一).
18.(x+100)(200-x)=20 000
三.解答题(共7小题)
19.解:(1)分解因式得:(x+3)(x﹣1)=0,
可得x+3=0或x﹣1=0,
解得:x1=﹣3,x2=1;
(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,
分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,
可得5x﹣1=0或10x﹣7=0,
解得:x1=0.2,x2=0.7;
(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,
可得3x=0或﹣x+6=0,
解得:x1=0,x2=6;
(4)这里a=3,b=﹣4,c=﹣1,
∵△=16+12=28>0,
∴x==,
解得:x1=,x2=.
20.解:设方程另一个根为x1,
根据题意得2x1=﹣6,解得x1=﹣3,
即方程的另一个根是﹣3.
21.解:(1)∵方程有两个实数根x1,x2,
∴△=(2k﹣2)2﹣4k2≥0,
解得k≤;
(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,
∵k≤,
∴2k﹣2<0,
又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.
解得k=4(不合题意,舍去)或k=﹣6,
∴k=﹣6.
22.解:当a=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+b=12,
∴b=8,
而4+4≠0,不符合题意;
当b=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+a=12,
而4+4=8,不符合题意;
当a=b时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴12=a+b,解得a=b=6,
∴m+2=36,
∴m=34.
23.解:(1)设条纹的宽度为x米.依题意得
2x×5+2x×4﹣4x2=×5×4,
解得:x1=(不符合,舍去),x2=.
答:配色条纹宽度为米.
(2)条纹造价:×5×4×200=850(元)
其余部分造价:(1﹣)×4×5×100=1575(元)
∴总造价为:850+1575=2425(元)
答:地毯的总造价是2425元.
24.解:设该快递公司投递总件数的月平均增长率为,根据题意得:
,
解得:,(不合题意舍去),
∴;
答:该快递公司投递总件数的月平均增长率为.今年月份的快递投递任务是(万件).
∵平均每人每月最多可投递万件,
∴名快递投递业务员能完成的快递投递任务是:,
∴该公司现有的名快递投递业务员不能完成今年月份的快递投递任务.
至少要增加名业务员.