北师大版八年级上册数学 第一单元勾股定理 同步练习(PDF含解析)

文档属性

名称 北师大版八年级上册数学 第一单元勾股定理 同步练习(PDF含解析)
格式 pdf
文件大小 378.6KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2022-09-21 12:43:30

图片预览

文档简介


知识清单:
勾股定理
一、勾股定理
1.勾股定理
(1)性质:直角三角形两直角边的平方和等于斜边的平左:
如果直角三角形的两直角边为a,b,斜边长为c,则a2+b2=c2.
(2)证明:
①赵爽弦图证明法
证法如下:c2=4×5ab+(b-a2,
b
化简得:a2+b2=c2
a
②毕达哥拉斯证明方法
O
D
如图,将长方形ABCD绕点B顺时针旋转90°,得到长方形ABCD.
其中:AB=a,AD=b,BD=C.
证法如下:
a+b-b+5b+
2
化简得:a2+b2=c2
③总统证明法
证法如下:
C
化简得:a2+b2=c2
b
1
二、勾股定理的应用
1.勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,
其主要应用是:
(1)已知直角三角形的任意两边长,求第三边,
在△4BC中,∠C=90°,则c=Va2+b2,b=Ve2-a2,a=Vc2-b2;
(2)已知直角三角形一边,可得另外两边之间的数量关系;
(3)可运用勾股定理解决一些实际问题(勾股树),
2.勾股数
(1)能够构成直角三角形的三边长的三个正整数称为勾股数,即a2+b2=c2中,
a,b,c为正整数时,称a,b,c为一组勾股数;
(2)记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等;
(3)用含字母的代数式表示n组勾股数:
n2-1,2n,n2+1(n≥2,n为正整数);
2n+1,2n2+2n,2n2+2n+1(n为正整数);
m2-n2,2mn,m2+n2(m>n,m,n为正整数).
3.勾股定理的逆定理:
如果三角形的三边长a,b,c,满足a2+b2=c2,那么该三角形为直角三角
形.
4.命题与逆命题:
如果两个命题,题设和结论正好相反,我们把这样的两个命题叫做互逆命
题.如果其中一个叫做原命题,那么另一个叫做它的逆命题
三、直角三角形
2
1.直角三角形的定义:有一个角是直角的三角形叫做直角三角形.
2.直角三角形的性质
(1)性质定理1:直角三角形的两个锐角互金.
(2)性质定理2:直角三角形斜边上的中线等于斜边的一半
例:在直角△MBC中,点M是斜边AB的中点,则CM=BM=AM=
(3)性质定理3:直角三角形两直角边的平方和等于斜边的平方,
即如果a、b为直角三角形的两条直角边的长,c为斜边的长,则a2+b2=c2.
(4)性质定理4:在直角三角形中,如果一个锐角等于30°,那么它所对的直角
边等于斜边的一半.例:在直角△DEF中,若
∠D=90,∠E=30°,则=7,DF:EF:DE=1:2:V5
D
3.直角三角形的判定
(1)判定定理1:有两个角互余的三角形是直角三角形;
(2)判定定理2:勾股定理的逆定理:
即:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角

4.等腰直角三角形
(1)定义:有两条直角边相等的直角三角形叫做等腰直角三角形,
(2)性质:等腰直角三角形是一种特殊的三角形,具有等腰三角形和直角三角
形的性质.
即:两个锐角都是45°,斜边上中线、顶角角平分线、斜边上的高三线合一,高
又垂直于斜边,所以两个小三角形均为等腰直角三角形.