6.5一次函数图象的应用(1)(2)[上学期]

文档属性

名称 6.5一次函数图象的应用(1)(2)[上学期]
格式 rar
文件大小 8.9KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2006-02-22 18:22:00

图片预览

文档简介

课题6.5.1一次函数图象的应用(一)
一、教学目标
1、能通过函数图象获取信息,发展形象思维。
2、能利用函数图象解决简单的实际问题,
3、初步体会方程与函数的关系。
二、能力目标
1、通过函数图象获取信息,培养学生的数形结合意识。
2、根据函数图象解决简单的实际问题,发展学生的教学应用能力。
3、通过方程与函数关系的研究,建立良好的知识联系。
三、情感目标
通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识。
四、教学重点
一次函数图象的应用
五、教学过程
1、新课导入
在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用。
2、讲授新课
(1)由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t(天)与蓄水量V(万米3)的关系如下图所示,回答下列问题:
①干旱持续10天,蓄水量为多少?连续干旱23天呢?
②蓄水量小于400万米3时,将发生严重干旱警报。干旱多少天后将发出严重干旱警报?
③按照这个规律,预计持续干旱多少天水库将干涸?
请大家根据图象回答问题,有困难的同学,请与同伴互相交流。
分析:
(1)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值。当t=10时,V约为1000万米3。同理可知当t为23天时,V约为750万米3。
(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t值。t约为40天。
(3)水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求。当V为0时,所对应的t的值约为60天。
练一练
某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x (千米)之间的关系如图所示。
根据图象回答下列问题:
(1)一箱汽油可供摩托车行驶多少千米?
(2)摩托车每行驶100千米消耗多少升汽油?
(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?
分析:(1)函数图象与x轴交点的横坐标即为摩托车行驶的最长路程。
(2)x从0增加到100时,y从10开始减少,减少的数量即为消耗的数量。
(3)当y小于1时,摩托车将自动报警。
3、课堂练习
1、看图填空
(1)当y=0时,x=_____________;(2)直线对应的函数表达式是_______。
解:(1)观察图象可知当y=0时,x=-2;(2)直线过(-2,0)和(0,1)设表达式为y=kx+b,得
-2k+b=0 ①
b=1 ②
把②代入①得 k=0.5,所以直线对应的函数表达式是y=0.5x+1。
4、议一议
一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?(当一次函数y=0.5x+1的函数值为0时,相应的自变量的值即为方程0.5x+1=0的解。函数y=0.5x+1与x轴交点的横坐标即为方程0.5x+1=0的解。
5、补充练习
全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示。
(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?
(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积减少到176万千米2。
解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2。
(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50。故从现在开始,第50年底后,该地区将丧失土地资源。
(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,由于(200-176)÷2=12,故到第12年底,该地区的沙漠面积能减少到176万千米2。
六、课后小结
1、通过函数图象获取信息。
2、利用函数图象解决简单的实际问题。
3、初步体会方程与函数的关系。
七、课后作业
课题6.5.2一次函数图象的应用(二)
一、教学目标
1、进一步训练学生的识图能力
2、能利用函数图象解决简单的实际问题。
二、能力目标
1、通过函数图象获取信息,进一步培养学生的数形结合意识。
2、通过函数图象解决实际问题,进一步发展学生的数学应用能力。
三、情感目标
通过函数图象来解决实际问题,使学生初步认识数学与人类生活的密切联系及对人类历史发展的作用,从而培养学生学习数学的兴趣,使他们能积极参与数学活动,进而更好地解决实际问题。
四、教学重点
一次函数图象的应用。
五、教学过程
1、新课导入
上节课我们学习了一次函数在水库蓄水量与干旱持续时间方面的应用,还有一次函数在摩托车油箱中的剩余油量与行驶路程方面的应用,一次函数的应用不仅仅是在这两个方面,本节课我们继续学习它的应用。
2、讲授新课
(一)例题讲解
如上图,L1反映了某公司产品的销售收入与销售量的关系, L 2反映了该公司产品的销售量的关系,根据图象填空。
①当销售量为2吨时,销售收入=_______元,销售成本=_____元;
②当销售量为6吨时,销售收入=________元,销售成本=_____元;
③当销售量等于______时,销售收入等于销售成本;
④当销售量________时,该公司赢利(收入大于成本);当销售量_______时,该公亏损(收入小于成本);
⑤L1对应的函数表达式是_______;L2对应的函数表达式是________________。
分析:(1)当销售量为2吨时,销售收入=2000元,销售成本为3000元;
(2)当销售量为6吨时,销售收入=6000元,销售成本=5000元;
(3)当销售量等于4吨时,销售收入等于销售成本;
(4)当销售量大于4号时,该公司赢利,当销售量小于4吨时,该公司亏损。
(5)L1经过原点和(4,4000),设表达式为y=kx,把(4,4000)代入,得
4000=4k,所以k=1000
所以L1的表达式为y=1000x,L2经过点(0,2000)和(4,4000),设表达式为y=kx+b。
根据题意,得
b=2000 ①
4k+b=4000 ②
把①代入②,得4k+2000=4000,所以k=500
所以L2的表达式为y=500x+2000
例2:我边防局接到情报,近海外有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如下图:
在下图中,L1,L2分别表示两船相对于海岸的距离S(海里)与追赶时间t(分)之间的关系。
根据图象回答下列问题:
(1)哪条线表示B到海岸的距离与追赶时间之间的关系?
(2)A、B哪个速度快?
(3)15分内B能否追上A?
(4)如果一直追下去,那么B能否追上A?
(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查。照此速度,B能否在A逃入公海前将其拦截?
分析:解:观察图象,得
(1)当t=0时,B距离海岸0海里,即s=0,故L1表示B到海岸的距离与追赶时间之间的关系;
(2)t从0增加到10时,L2,的纵坐标增加了2,而L1的纵坐标增加5,即10分内,A行驶了2海里,B行驶了5海里,所以B的速度快。
(3)延长L1,L2,可以看出,当t=15时,L1上对应点在L2上对应点的下方,这表明,15分时B尚未追上A。
(4)如下图,L1,L2相交于点P,因此,如果一直追直去,那么B一定能追上A。
(5)下图中,L1与L2交点P的纵坐标小于12,这说明在A逃入公海前,我边防快艇B能够追上A。
(二)课堂练习
如图,AC、BC分别表示甲、乙两人的运动图象,请根据图像回答下列问题:
(1)谁先出发?先出发者提前几小时?
(2)甲出发多长时间后,后出发的人追上提前出发的人?此时,他们距离乙出发地点多少千米?
(3)甲、乙两人各自的运动速度是多少?
分析:(1)乙先出发,先出发1小时;(2)甲出发4小时后,追上乙,此时,他们距离乙出发地点15千米;(3)速度:甲20÷4=5千米/小时,乙15÷5=3千米/小时。
(四)补充练习
某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同,设汽车每月行驶x千米,应付给个体车主的月费用y1元,应付给出租车公司的月租费为y2元,y1,y2分别与x之间的函数关系图象如图,观察图象回答下列问题。
(1)每月行驶的路程在什么范围内时、租国营公司的车合算?
(2)每月行驶的路程等于多少时,租两家的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪一家的车合算?
解:观察图象可知:
(1)每月行驶的路程小于1500千米时,租国营公司的车合算。
(2)每月行驶的路程等于1500千米时,租两家车的费用相同。
(3)如果每月行驶的路程为2300千米,那么这个单位租个体车主的车合算。
六、课后作业