人教版八年级数学上册12.3角的平分线的性质同步练习题 (含解析)

文档属性

名称 人教版八年级数学上册12.3角的平分线的性质同步练习题 (含解析)
格式 docx
文件大小 216.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-09-21 17:13:12

图片预览

文档简介

2022-2023学年人教版八年级数学上册《12.3角的平分线的性质》同步练习题(附答案)
一.选择题
1.如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB=20,则△AOB的面积是(  )
A.20 B.30 C.50 D.100
2.如图,Rt△ABC中,∠C=90°,BG平分∠ABC,交AC于点G,若CG=1,P为AB上一动点,则GP的最小值为(  )
A.1 B. C.2 D.无法确定
3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线,嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是(  )
A.只有嘉嘉对 B.只有淇淇对 C.两人都对 D.两人都不对
4.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是(  )
A.SAS B.ASA C.AAS D.SSS
5.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是(  )
①△ABE的面积=△BCE的面积;②∠FAG=∠FCB;③AF=AG;④BH=CH.
A.①②③④ B.①②③ C.②④ D.①③
6.如图,点P在∠AOB的平分线上,PC⊥OA于点C,∠AOB=30°,点D在边OB上,且OD=DP=2.则线段PC的长度为(  )
A.3 B.2 C.1 D.
7.如图,OD平分∠AOB,DE⊥AO于点E,DE=4,点F是射线OB上的任意一点,则DF的最小值是(  )
A.6 B.5 C.4 D.3
8.下列作图语句正确的是(  )
A.连接AD,并且平分∠BAC B.延长射线AB
C.作∠AOB的平分线OC D.过点A作AB∥CD∥EF
9.在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,BC=7,BD=4,则点D到AB的距离是(  )
A.2 B.3 C.4 D.5
10.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=24,DE=4,AB=7,则AC长是(  )
A.3 B.4 C.6 D.5
11.如图,点I是△ABC三条角平分线的交点,△ABI的面积记为S1,△ACI的面积记为S2,△BCI的面积记为S3,关于S1+S2与S3的大小关系,正确的是(  )
A.S1+S2=S3 B.S1+S2<S3 C.S1+S2>S3 D.无法确定
12.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,CF⊥AB,交AB于点F,交BE于点D,若BC=8cm,DF=3cm,则△CDB的面积为(  )
A.12cm2 B.8cm2 C.6cm2 D.4cm2
二.填空题
13.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=8,则PQ的最小值为   .
14.如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是   .
15.如图,△ABC的三条角平分线交于点O,O到AB的距离为3,且△ABC的周长为18,则△ABC的面积为    .
16.如图,已知△ABC的周长是16,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D且OD=2,△ABC的面积是   .
三.解答题
17.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.△ABC的面积为70,AB=16,BC=12.求DE的长.
18.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF
求证:AD平分∠BAC.
19.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.
(1)求证:∠AEC=∠ACE;
(2)若∠AEC=2∠B,AD=2,求AB的长.
20.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.
参考答案
一.选择题
1.解:过O作OE⊥AB于点E,
∵BO平分∠ABC,OD⊥BC于点D,
∴OE=OD=5,
∴△AOB的面积=,
故选:C.
2.解:如图,过点G作GH⊥AB于H.
∵GB平分∠ABC,∠C=90°,即GC⊥BC,
∴GH=GC=1,
根据垂线段最短可知,GP的最小值为1,
故选:A.
3.解:嘉嘉利用量角器画90°角,可以画垂线,方法正确.
淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,
故选:C.
4.解:如图,由作图可知,OA=OB=CE=EF,BA=CF.
在△AOB和△CEF中,

∴△AOB≌△CEF(SSS),
故选:D.
5.解:∵BE是AC边的中线,
∴AE=CE,
∵△ABE的面积=,△BCE的面积=AB,
∴△ABE的面积=△BCE的面积,故①正确;
∵AD是BC边上的高,
∴∠ADC=90°,
∵∠BAC=90°,
∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,
∴∠FAG=∠ACB,
∵CF是∠ACB的角平分线,
∴∠ACF=∠FCB,∠ACB=2∠FCB,
∴∠FAG=2∠FCB,故②错误;
∵在△ACF和△DGC中,∠BAC=∠ADC=90°,∠ACF=∠FCB,
∴∠AFG=180°﹣∠BAC﹣∠ACF,∠AGF=∠DGC=180°﹣∠ADC﹣∠FCB,
∴∠AFG=∠AGF,
∴AF=AG,故③正确;
根据已知不能推出∠HBC=∠HCB,即不能推出HB=HC,故④错误;
即正确的为①③,
故选:D.
6.解:过P作PE⊥OB于E,
∵点P在∠AOB的平分线上,PC⊥OA,
∴PC=PE,∠AOP=∠BOP,
∵OD=DP,
∴∠BOP=∠DPO,
∴∠AOP=∠DPO,
∴PD∥OA,
∴∠PDE=∠AOB,
∵∠AOB=30°,
∴∠PDE=30°,
∵∠PEO=90°,DP=2,
∴PE=DP=1,
∴PC=1,
故选:C.
7.解:当DF⊥OB时,DF的值最小,
∵DE⊥OA,OD平分∠AOB,
∴DE=DF,
∵DE=4,
∴DF的最小值是4,故选:C.
8.解:A.连接AD,不能同时使平分∠BAC,此作图错误;
B.只能反向延长射线AB,此作图错误;
C.作∠AOB的平分线OC,此作图正确;
D.过点A作AB∥CD或AB∥EF,此作图错误;故选:C.
9.解:∵BC=7,BD=4,
∴CD=7﹣4=3,
由角平分线的性质,得点D到AB的距离=CD=3,故选:B.
10.解:作DF⊥AC于F,如图,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF=4,
∵S△ADB+S△ADC=S△ABC,
∴×4×7+×4×AC=24,
∴AC=5,故选:D.
11.解:∵点I是△ABC三条角平分线的交点,
∴△ABI和△BIC和△AIC的高相等,
∵△ABI的面积记为S1,△ACI的面积记为S2,△BCI的面积记为S3,
∴S1+S2=,S3=,
由△ABC的三边关系得:AB+AC>BC,
∴S1+S2>S3,故选:C.
12.解:作DH⊥BC于点H,如图:
∵BE平分∠ABC,CF⊥AB,DH⊥BC.
∴DH=DF.
∵DF=3cm.
∴DH=3cm.
∵BC=8cm.
∴△CDB的面积为:=12cm2.
故选:A.
二.填空题(共4小题)
13.解:过P作PE⊥OM于E,当Q和E重合时,PQ的值最小,
∵OP平分∠MON,PA⊥ON,PA=8,
∴PE=PA=8,
即PQ的最小值是8,
故答案为:8.
14.解:∵AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F
∴DE=DF
在Rt△AED和Rt△AFD中
∴△AED≌△AFD(HL)
∴AE=AF
又AD是△ABC是角平分线
∴AD垂直平分EF(三线合一)
故答案为:AD垂直平分EF.
15.解:作OE⊥AB于E,OF⊥BC于F,OH⊥AC于H,
∵△ABC的三条角平分线交于点O,OE⊥AB,OF⊥BC,OH⊥AC,
∴OF=OH=OE=3,
∴△ABC的面积=×(AB+BC+AC)×3=27,
故答案为:27.
16.解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,
∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,
∴OE=OD,OD=OF,
即OE=OF=OD=2,
∴△ABC的面积是:S△AOB+S△AOC+S△OBC
=×AB×OE+×AC×OF+×BC×OD
=×2×(AB+AC+BC)
=×2×16=16,
故答案为:16.
三.解答题
17.解:如图,过点D作DF⊥BC于F,
∵BD是△ABC的角平分线,DE⊥AB,
∴DE=DF,
S△ABC=×16 DE+×12 DF=70,
所以,14DE=70,
解得DE=5.
18.证明:∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°,
在Rt△BDE和Rt△CDF中,

∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF,
∵AD=AD,
Rt△ADE≌Rt△ADF(HL),
∴∠DAE=∠DAF,
∴AD平分∠BAC.
19.解:(1)∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠A=∠B+∠A=90°,
∴∠ACD=∠B,
∵CE平分∠BCD,
∴∠BCE=∠DCE,
∴∠B+∠BCE=∠ACD+∠DCE,
即∠AEC=∠ACE;
(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,
∴∠B=∠BCE,
又∵∠ACD=∠B,∠BCE=∠DCE,
∴∠ACD=∠BCE=∠DCE,
又∵∠ACB=90°,
∴∠ACD=30°,∠B=30°,
∴Rt△ACD中,AC=2AD=4,
∴Rt△ABC中,AB=2AC=8.
20.解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,
∴DE=DF,
∵AB=6,BC=8,S△ABC=28,
∴S△ABC=S△ABD+S△BCD=AB DE+BC DF=DE (AB+BC)=28,
即DE(6+8)=28,
∴DE=4.