名称 | 7.4.1 二项分布-【新教材】人教A版(2019)高中数学选择性必修第三册 课件(19张PPT) | ![]() | |
格式 | pptx | ||
文件大小 | 878.9KB | ||
资源类型 | 教案 | ||
版本资源 | 人教A版(2019) | ||
科目 | 数学 | ||
更新时间 | 2022-09-21 09:01:05 |
如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布(binomial distribution),记作X~B(n,p).
1.二项分布中,各个参数的意义?
n:重复试验的次数;k:事件A发生的次数;p:在一次试验中,事件A发生的概率.
2.判断一个随机变量是否服从二项分布,关键有两点:
一是对立性,即一次试验中,事件发生与否两者必有其一;
二是重复性,即试验是独立重复地进行了n次.
概念新授
一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0
如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布(binomial distribution),记作X~B(n,p).
思考1:二项分布与两点分布有何关系
两点分布是一种特殊的二项分布,即是n=1的二项分布;二项分布可以看做两点分布的一般形式.
思考2:对比二项分布和二项式定理,你能看出他们之间的联系吗?
如果把p看成b,1-p看成a,则就是二项式的展开式的通项,由此才称为二项分布。
即
例1 :将一枚质地均匀的硬币重复抛掷10次,求:
(1)恰好出现5次正面朝上的概率;
(2)正面朝上出现的频率在[0.4,0.6]内的概率.
解:设A=“正面朝上”,则P(A)=0.5.用X表示事件A发生的次数,X~B(10,0.5).
(1)恰好出现5次正面朝上等价于X=5,于是
;
(2)正面朝上出现的频率在[0.4,0.6]内等价于4≤X≤6,于是
例2:如图是一块高尔顿板的示意图.在一块木板上钉着若干排相互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中.格子从左到右分别编号为0,1,2,…,10,用X表示小球最后落入格子的号码,求X的分布列。
解:设A=“向右下落”,则=“向左下落”,且P(A)=P()=0.5.因为小球最后落入格子的号码X等于事件A发生的次数,而小球在下落的过程中共碰撞小木钉10次,所以X~B(10,0.5).于是,X的分布列为
,10.
X的概率分布图如下图所示:
例3:甲、乙两选手进行象棋比赛,如果每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,那么采用3局2胜制还是采用5局3胜制对甲更有利
解法一:采用3局2胜制,甲最终获胜有两种可能的比分2:0或2:1,前者是前两局甲连胜,后者是前两局甲、乙各胜一局且第3局甲胜.因为每局比赛的结果是独立的,甲最终获胜的概率为
.
类似地,采用5局3胜制,甲最终获胜有3种比分3:0,3:1或3:2因为每局比赛的结果是独立的,所以甲最终获胜的概率为.
例3:甲、乙两选手进行象棋比赛,如果每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,那么采用3局2胜制还是采用5局3胜制对甲更有利
解法2:采用3局2胜制,不妨设赛满3局,用X表示3局比赛中甲胜的局数,则X~B(3,0.6).
甲最终获胜的概率为=P(X=2)+P(X=3)= =0.648.
采用5局3胜制,不妨设赛满5局,用X表示5局比赛中甲胜的局数,则X~B(5,0.6).甲最终获胜的概率为
+
=0.68256
因为,所以5局3胜制对甲有利.实际上,比赛局数越多,对实力较强者越有利.
一般地,确定一个二项分布模型的步骤如下:
(1)明确伯努利试验及事件A的意义,确定事件A发生的概率p;
(2) 确定重复试验的次数n,并判断各次试验的独立性;
(3)设X为n次独立重复试验中事件A发生的次数,则X~B(n,p).
方法归纳
问题3:假设随机变量X服从二项分布B(n,p),那么X的均值和方差是什么?
问题3:假设随机变量X服从二项分布B(n,p),那么X的均值和方差是什么?
一般地,如果X~B(n,p),那么E(X)=np; D(X)=np(1-p).
课堂小结
1.二项分布的定义:
2.确定一个二项分布模型的步骤:
一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0
如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布(binomial distribution),记作X~B(n,p).
(1)明确伯努利试验及事件A的意义,确定事件A发生的概率p;
(2) 确定重复试验的次数n,并判断各次试验的独立性;
(3)设X为n次独立重复试验中事件A发生的次数,则X~B(n,p).
3.一般地,如果X~B(n,p),那么E(X)=np; D(X)=np(1-p).