2022-2023学年苏科版八年级数学上册2.4 线段、角的轴对称性 分类练习(含答案)

文档属性

名称 2022-2023学年苏科版八年级数学上册2.4 线段、角的轴对称性 分类练习(含答案)
格式 docx
文件大小 253.6KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2022-09-22 16:53:40

图片预览

文档简介

2022-2023学年苏科版八年级数学上册《2.4线段、角的轴对称性》题型分类练习(附答案)
类型一.垂直平分线与角度
1.如图△ABC中∠A=56°,PD垂直平分AB,PE垂直平分BC,则∠BPC的度数为(  )
A.124° B.112° C.108° D.118°
2.如图,锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于P点.若∠BAC=60°,∠ACP=24°,则∠ABP是(  )
A.24° B.30° C.32° D.36°
3.如图,△ABC中,∠BAC=100°,DF,EG分别是AB,AC的垂直平分线,则∠DAE等于(  )
A.50° B.45° C.30° D.20°
类型二.垂直平分线与长度
4.在△ABC中,AB的垂直平分线l1交BC于点D,AC的垂直平分线l2交BC于点E,l1与l2相交于点O,△ADE的周长为6.
(1)AD与BD的数量关系为   .
(2)求BC的长.
(3)分别连接OA,OB,OC,若△OBC的周长为16,求OA的长.
5.如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为18cm,则△ABC的周长为(  )
A.23cm B.28cm C.13cm D.18cm
6.如图,D是四边形AEBC内一点,连接AD、BD,已知CA=CB,DA=DB,EA=EB.
(1)C、D、E三点在一条直线上吗?为什么?
(2)如果AB=24,AD=13,CA=20,那么CD的长是多少?
类型三.垂直平分线的判定
7.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是AB上的一点,且在BD的垂直平分线EG上,DE交AC于点F,求证:点E在AF的垂直平分线上.
8.如图,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于F.试确定AD与EF的位置关系,并说明理由.
9.如图,AC=AD,BC=BD,则有(  )
A.AB与CD互相垂直平分 B.CD垂直平分AB
C.AB垂直平分CD D.CD平分∠ACB
类型四.角平分线与角度
10.探究:
(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB.求证:∠P=90°+∠A.
(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE.猜想∠P和∠A有何数量关系,并证明你的结论.
(3)如图3,BP平分∠CBF,CP平分∠BCE.猜想∠P和∠A有何数量关系,请直接写出结论.
11.如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是(  )
A.35° B.40° C.50° D.55°
12.△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等;∠A=40°,则∠BOC=(  )
A.110° B.120° C.130° D.140°
类型五.角平分线与长度
13.如图,△ABC的三边AB、AC、BC的长分别为4、6、8,其三条角平分线将△ABC分成三个三角形,则S△OAB:S△OAC:S△OBC=(  )
A.2:3:4 B.1:1:1 C.1:2:3 D.4:3:2
14.如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE=3,则△ABE的面积等于(  )
A.15 B.12 C.10 D.14
15.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是(  )
A.1 B.1.5 C.2 D.2.5
类型六.尺规作图
16.如图,在△ABC中,∠B=30°,∠C=40°.
(1)尺规作图:①作边AB的垂直平分线交BC于点D;
②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)
(2)在(1)所作的图中,求∠DAE的度数.
17.如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知△CDE的面积比△CDB的面积小5,则△ADE的面积为(  )
A.5 B.4 C.3 D.2
18.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在(  )
A.在AC,BC两边高线的交点处
B.在AC,BC两边中线的交点处
C.在AC,BC两边垂直平分线的交点处
D.在∠A,∠B两内角平分线的交点处在
培优训练
19.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为(  )
A.6 B.8 C.10 D.12
20.如图,在△ABC中,AB=AC,∠BAC=120°.AB的垂直平分线交AB于E,交BC于M;AC的垂直平分线交AC于F,交BC于N.连接AM、AN.
(1)求∠MAN的大小;
(2)求证:BM=CN.
21.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,
(1)如图1,求∠BDC的度数;
(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.
参考答案
类型一.垂直平分线与角度
1.解:如图,连接PA,
∵PD垂直平分AB,PE垂直平分BC,
∴PA=PB,PB=PC,
∴PA=PB=PC,
∴∠PBA=∠PAB,∠PCA=∠PAC,
∵∠A=56°,
∴∠PBA+∠PCA=∠PAB+∠PAC=∠A=56°,
在△ABC中,∠PBC+∠PCB=180°﹣∠A﹣(∠PBA+∠PCA)=180°﹣56°﹣56°=68°,
在△PBC中,∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣68°=112°.
故选:B.
2.解:∵BP平分∠ABC,
∴∠ABP=∠CBP,
∵直线l是线段BC的垂直平分线,
∴BP=CP,
∴∠CBP=∠BCP,
∴∠ABP=∠CBP=∠BCP,
∵∠A+∠ACB+∠ABC=180°,∠A=60°,∠ACP=24°,
∴3∠ABP+24°+60°=180°,
解得:∠ABP=32°.
故选:C.
3.解:根据线段的垂直平分线性质,可得AD=BD,AE=CE.
故∠EAC=∠ECA,∠ABD=∠BAD.
因为∠BAC=100°,∠ABD+∠ACE=180°﹣100°=80°,
所以∠DAE=100°﹣∠BAD﹣∠EAC=20°.
故选:D.
类型二.垂直平分线与长度
4.解:(1)∵l1是线段AB的垂直平分线,
∴AD=BD,
故答案为:AD=BD;
(2)∵l2是线段AC的垂直平分线,
∴EA=EC,
∵△ADE的周长为6,
∴AD+DE+AE=6,
∴BD+DE+EC=6,即BC=6;
(3)∵l1是线段AB的垂直平分线,
∴OA=OB,
∵l2是线段AC的垂直平分线,
OA=OC,
∴OB=OC,
∵△OBC的周长为16,BC=6,
∴OB+OC=10,
∴OA=OB=OC=5.
5.解:∵DE是AC的中垂线,
∴AD=CD,
∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,
又∵AE=5cm,
∴AC=2AE=2×5=10cm,
∴△ABC的周长=18+10=28cm,
故选:B.
6.解:(1)C、D、E三点在一条直线上.
理由:连接CD.ED,
在△ADC和△BDC中

∴△ADC≌△BDC(SSS),
∴∠ADC=∠BDC.∠ACD=∠BCD.
在△ADE和△BDE中

∴△ADE≌△BDE(SSS),
∴∠ADE=∠BDE.
∵∠ADC+∠BDC+∠ADE+∠BDE=360°,
∴2∠ADC+2∠ADE=360°,
∴∠ADC+∠ADE=180°,
∴C、D、E三点在一条直线上;
(2)连接AB,
∵AC=BC,∠ACD=∠BCD,
∴AF=BF=AB,CF⊥AB.
∵AB=24,
∴AF=12.
∵AD=13,CA=20,
∴在Rt△ADF和△AFC中,由勾股定理,得
FD=5,FC=16,
∴CD=16﹣5=11.
答:CD的长是11.
类型三.垂直平分线的判定
7.解:∵EG垂直平分BD,
∴BE=DE,
∴∠BEG=∠DEG,
∵∠ACB=90°,
∴EG∥AC,
∴∠BEG=∠BAC,∠DEG=∠AFE,
∴∠EAF=∠AFE,
∴AE=EF,
∴点E在AF的垂直平分线上.
8.解:AD⊥EF.
∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,∠1=∠ADF,
∵∠1=∠2,
∴∠2=∠ADF.
∴AF=DF.
∴四边形AEDF是菱形.
∴AD⊥EF.
9.解:∵AC=AD,BC=BD,
∴AB是线段CD的垂直平分线,
故选:C.
类型四.角平分线与角度
10.证明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.
又∵BP平分∠ABC,CP平分∠ACB,
∴∠PBC=∠ABC,
∠PCB=∠ACB,
∴∠PBC+∠PCB=(180°﹣∠A),
根据三角形内角和定理可知∠BPC=180°﹣(180°﹣∠A)=90°+∠A;
(2)∠A=∠P,理由如下:
∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠PBC=∠ABC,∠PCE=∠ACE.
∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,
∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,
∴∠ACP=∠ABC+∠A,
∴∠ABC+∠A=∠PBC+∠P,
∴∠A=∠P.
(3)∠P=90°﹣∠A,理由如下:
∵P点是外角∠CBF和∠BCE的平分线的交点,∠P+∠PBC+∠PCB=180°
∴∠P=180°﹣(∠PBC+∠PCB)
=180°﹣(∠FBC+∠ECB)
=180°﹣(∠A+∠ACB+∠A+∠ABC)
=180°﹣(∠A+180°)
=90°﹣∠A.
11.解:∵∠BAC=80°,
∴∠ABC+∠BCA=180°﹣80°=100°,
∴∠BAC的外角=100°,
∵∠ABC和∠ACD的平分线相交于点E,
∴AE是∠BAC的外角平分线,
∴∠CAE=50°,
故选:C.
12.解:∵O到三角形三边距离相等,
∴O是内心,
即三条角平分线交点,AO,BO,CO都是角平分线,
∴∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,
∴∠ABC+∠ACB=180°﹣40°=140°,
∴∠OBC+∠OCB=70°,
∴∠BOC=180°﹣70°=110°.
故选:A.
类型五.角平分线与长度
13.解:过点O作OD⊥AB于D,OE⊥AC于E,OF⊥BC于F,
∵O是三角形三条角平分线的交点,
∴OD=OE=OF,
∵AB=4,AC=6,BC=8,
∴S△OAB:S△OAC:S△OBC=2:3:4.
故选:A.
14.解:过点E作EF⊥AB于点F,如图:
∵BD是AC边上的高,
∴ED⊥AC,
又∵AE平分∠CAB,DE=3,
∴EF=3,
∵AB=8,
∴△ABE的面积为:8×3÷2=12.
故选:B.
15.解:过点D作DE⊥BC于E,则DE即为DP的最小值,
∵∠BAD=∠BDC=90°,∠ADB=∠C,
∴∠ABD=∠CBD,
∵∠ABD=∠CBD,DA⊥AB,DE⊥BC,
∴DE=AD=2,
故选:C.
类型六.尺规作图
16.解:(1)如图,点D,射线AE即为所求.
(2)∵DF垂直平分线段AB,
∴DB=DA,
∴∠DAB=∠B=30°,
∵∠C=40°,
∴∠BAC=180°﹣30°﹣40°=110°,
∴∠CAD=110°﹣30°=80°,
∵AE平分∠DAC,
∴∠DAE=∠DAC=40°.
17.解:由尺规作图可知,MN是线段AB的垂直平分线,
∴点D是AB的中点,
∴S△ADC=S△BDC,
∵S△BDC﹣S△CDE=5,
∴S△ADC﹣S△CDE=5,即△ADE的面积为5,
故选:A.
18.解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.
则超市应建在AC,BC两边垂直平分线的交点处.
故选:C.
培优训练
19.解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=CM+MD+CD=AD+BC=8+×4=8+2=10.
故选:C.
20.(1)解:∵AB=AC,∠A=120°,
∴∠B=∠C=30°,
∵直线ME垂直平分AB,
∴BM=AM,
∴∠B=∠MAB=30°,
∴∠AMN=∠B+∠MAB=60°,
同理可得:∠ANM=60°.
∴∠MAN=180°﹣60°﹣60°=60°;
(2)证明:∵在△AMN中,∠AMN=∠ANM=∠MAN=60°,
∴△AMN为等边三角形.
即 AM=AN=MN,
又∵BM=AM,CN=AN,
∴BM=CN.
21.解:(1)∵BD平分∠ABC,
∴∠DBC=∠ABC=×60°=30°,
∵CD平分∠ACB,
∴∠DCB=∠ACB=×40°=20°,
∴∠BDC=180°﹣∠DBC﹣∠DCB
=180°﹣30°﹣20°
=130°;
(2)作DF⊥AC于F,DH⊥BC于H,如图2,
∵BD平分∠ABC,DE⊥AB,DH⊥BC,
∴DH=DE=2,
∵CD平分∠ACB,DF⊥AC,DH⊥BC,
∴DF=DH=2,
∴△ADC的面积=DF AC=×2×4=4.