1.4用一元二次方程解决问题 同步精练
一、单选题
1.某商品原价148元,连续两次涨价a%后售价为200元,下列所列方程正确的是( )
A. B.
C. D.
2.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是( ).
A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570
C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570
3.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为,根据题意,下面所列方程正确的是( )
A. B. C. D.
4.一个两位数的两个数字的和为9,把这个两位数的个位数字与十位数字互换得到一个新的两位数,它与原两位数的积为1458,设原两位数的个位数字为x,则可列方程( )
A. B.
C. D.
5.某商店从厂家以每件18元的价格购进一批商品.该商品可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出件,但物价部门限定每件商品加价不能超过进货价的25%,如果商店计划要获利400元.则每件商品的售价应定为( )
A.22元 B.24元 C.26元 D.28元
6.某超市销售一种饮料,每瓶进价为6元.当每瓶售价为10元时,日均销售量为160瓶,经市场调查表明,每瓶售价每增加1元,日均销售量减少20瓶.若超市计划该饮料日均总利润为700元,且尽快减少库存,则每瓶该饮料售价为( )
A.11 B.12 C.13 D.14
7.《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈=10尺,1尺=10寸)?若设门的宽为x寸,则下列方程中,符合题意的是( )
A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12
C.x2+1002=(x+68)2 D.x2+(x+68)2=1002
8.2020年12月29日,贵阳轨道交通2号线实现试运行,从白云区到观山湖区轨道公司共设计了132种往返车票,则这段线路有多少个站点?设这段线路有x个站点,根据题意,下面列出的方程正确的是( )
A. B.
C. D.
9.某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利为20元,需要每盆增加几株花苗?设每盆增加x株花苗,下面列出的方程中符合题意的是( )
A.
B.
C.
D.
10.某商场在销售一种糖果时发现,如果以20元/kg的单价销售,则每天可售出100kg,如果销售单价每增加0.5元,则第天销售量会减少2kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x元/kg,依题意可列方程为( )
A. B.
C. D.
11.小球以的速度在平坦地面上开始滚动,并且均匀减速,后小球停下来.小球滚动到时约用了多少时间(精确到)?( )
A. B. C. D.
12.今年“十一”长假某湿地公园迎来旅游高峰,第一天的游客人数是1.2万人,第三天的游客人数为2.3万人,假设每天游客增加的百分率相同且设为x,则根据题意可列方程为( )
A.2.3 (1+x)2=1.2 B.1.2(1+x)2=2.3
C.1.2(1﹣x)2=2.3 D.1.2+1.2(1+x)+1.2(1+x)2=2.3
二、填空题
13.中国“一带一路”倡议给沿线国家带来很大的经济效益.若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为______________.
14.如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,点P在边AC上,以2cm/s的速度从点A向点C移动,点Q在边CB上,以1cm/s的速度从点C向点B移动.点P、Q同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,当△PQC的面积为3cm2时,P、Q运动的时间是_____秒.
15.某商场将进价为30元的台灯以单价40元售出,平均每月能售出600个.调查表明:这种台灯的单价每上涨1元,其销售量将减少10个.为实现平均每月10000元的销售利润,从消费者的角度考虑,商场对这种台灯的售价应定为______元.
16.如果两个数的差为3,并且它们的积为88,那么其中较大的一个数为_____.
17.已知-2是三次方程的唯一实数根,求c的取值范围.下面是小丽的解法:
解:因为-2是三次方程的唯一实数,所以
,可得,
再由,得出c>2
根据小丽的解法,则b的取值范围是______________.
三、解答题
18.卫生部疾病控制专家经过调研提出,如果人传播人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为“超级传播者”如果某镇有人不幸成为新冠肺炎病毒的携带者,假设每轮传染的人数相同,经过两轮传染后共有人成为新冠肺炎病毒的携带者.
(1)经过计算,判断最初的这名病毒携带者是“超级传播者”吗?请先写出结论,再说明理由;
(1)若不加以控制传染渠道,经过轮传染,共有多少人成为新冠肺炎病毒的携带者?
19.在刚刚过去的“五一”假期中,某超市为迎接“五一”小长假购物高潮,经销甲、乙两种品牌的洗衣液.市场上甲种品牌洗衣液的进价比乙种品牌洗衣液的进价每瓶便宜10元,该超市用6000元购进的甲种品牌洗衣液与用8000元购进的乙种品牌洗衣液的瓶数相同.
(1)求甲、乙两种品牌的洗衣液的进价;
(2)在销售中,该超市决定将甲种品牌的洗衣液以每瓶45元售出,每天固定售出100瓶;但调查发现,乙种品牌的洗衣液每瓶售价50元时,每天可售出140瓶,并且当乙种品牌的洗衣液每瓶售价每提高1元时,乙种品牌的洗衣液每天就会少售出2瓶,当乙种品牌的洗衣液的每瓶售价为多少元时,两种品牌的洗衣液每天的利润之和可达到4700元?
20.阅读下面材料:
一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,它通常用字母表示,我们可以用公式来计算等差数列的和.(公式中的n表示数的个数,a表示第一个数的值,)
例如:3+5+7+9+11+13+15+17+19+21=10×3+×2=120.
用上面的知识解决下列问题.
(1)计算:2+8+14+20+26+32+38+44+50+56+62+68+74+80+86+92+98+104+110+116
(2)某县决定对坡荒地进行退耕还林.从2009年起在坡荒地上植树造林,以后每年植树后坡荒地的实际面积按一定规律减少,下表为2009、2010、2011、2012四年的坡荒地面积的统计数据.问到哪一年,可以将全县所有坡荒地全部种上树木.
2009年 2010年 2011年 2012年
植树后坡荒地的实际面积(公顷) 25 200 24 000 22 400 20400
21.某房地产商决定将一片小型公寓作为精装房出售,每套公寓面积均为32平方米,现计划为100套公寓地面铺地砖,根据用途的不同选用了A、B两种地砖,其中50套公寓全用A种地砖铺满,另外50套公寓全用B种地砖铺满,A种地砖是每块面积为0.64平方米的正方形,B种地砖是每块而积为0.16平方米的正方形,且A种地砖每块的进价比B种地砖每块的进价高40元,购进A、B两种地砖共花费350000元.(注:每套公寓地面看成正方形,均铺满地砖且地砖无剩余)
(1)求A、B两种地砖每块的进价分别是多少元?
(2)实际施工时,房地产商增加了精装的公寓套数,结果实际铺满A种地砖的公寓套数增加了,铺满B种地砖的公寓套数增加了,由于地砖的购进量增加.B种地砖每块进价在(1)问的基础上降低了,但A种地砖每块进价保持不变,最后购进A、B两种地砖的总花费比原计划增加了,求a的值.
参考答案
1--10AAACA ADBAC 11--12BB
13.20
14.1
15.50
16.11或﹣8
17.b>-3
18.解:最初的这名病毒携带者是“超级传播者”,理由如下:
设每人每轮传染的人数为人,则第一轮传染了人,第二轮传染了人,
依题意得:,
解得:不合题意,舍去.
,
最初的这名病毒携带者是“超级传播者”.
人.
答:若不加以控制传染渠道,经过轮传染,共有人成为新冠肺炎病毒的携带者.
19.(1)解:设甲种品牌的洗衣液的进价为x元,乙种品牌的洗衣液的进价为(x+10)元,由题意得:
,
解得:,
经检验:x=30是原方程的解,
∴乙种品牌的进价为:30+10=40(元),
答:甲种品牌的洗衣液的进价为30元,乙种品牌的洗衣液的进价为40元.
(2)
解:设当乙种品牌的洗衣液的每瓶售价为m元时,两种品牌的洗衣液每天的利润之和可达到4700元,由题意得:
整理得:,
解得:,
答:当乙种品牌的洗衣液的每瓶售价为80元时,两种品牌的洗衣液每天的利润之和可达到4700元.
20.解:(1)由题意,得
,,,
∵,
∴;
(2)解:设再过x年可以将全县所有的坡荒地全部种上树木.根据题意,得
1200x+×400=25200,
整理得:(x﹣9)(x+14)=0,
∴x=9或x=﹣14(负值舍去).
∴2009+9-1=2017;
答:到2017年,可以将全县所有的坡荒地全部种上树木.
21.(1)一套公寓用A种地砖需要:块
一套公寓用B种地砖需要:块
设B种地砖每块的进价为x元
由题可得:
解得:
元
故A、B两种地砖每块的进价分别是60,20元.
(2)由题可得:
整理得:
解得然:.
∵,
∴