一、单选题
1.已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为( )
A. B. C. D.
2.若圆上存在点P,且点P关于直线y=x的对称点Q在圆上,则r的取值范围是( )
A. B. C. D.
3.已知直线与圆:交于两点,若为等腰直角三角形,则的值为( )
A. B. C. D.
4.已知圆,直线为上的动点,过点作圆的切线,切点为,当四边形面积最小时,直线的方程为( )
A. B.
C. D.
5.已知,,圆:(),若圆上存在点,使,则圆的半径的范围是( )
A. B. C. D.
6.已知边长为2的等边三角形,是平面内一点,且满足,则三角形面积的最小值是( )
A. B. C. D.
二、多选题
7.如图,点,,,,是以为直径的圆上一段圆弧,是以为直径的圆上一段圆弧,是以为直径的圆上一段圆弧,三段弧构成曲线则( )
A.曲线与轴围成的图形的面积等于
B.与的公切线的方程为
C.所在圆与所在圆的公共弦所在直线的方程为
D.所在的圆截直线所得弦的长为
8.已知圆,则下列说法正确的是( )
A.圆的半径为
B.圆截轴所得的弦长为
C.圆上的点到直线的最小距离为
D.圆与圆相离
三、填空题
9.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:是圆Q的圆心,圆Q过坐标原点O;点L、S均在轴上,圆L与圆S的半径都等于2,圆S 圆L均与圆Q外切.已知直线l过点O.若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=_____.
10.已知直线:与直线:相交于点,点是圆上的动点,则的最大值为___________.
11.在平面直角坐标系xOy中,已知,A,B是圆C:上的两个动点,满足,则△PAB面积的最大值是__________.
12.已知圆:,为过的圆的切线,为上任一点,过作圆:的切线,则切线长的最小值是__________.
四、解答题
13.我们知道:当是圆O:上一点,则圆O的过点的切线方程为;当是圆O:外一点,过作圆O的两条切线,切点分别为,则方程表示直线AB的方程,即切点弦所在直线方程.请利用上述结论解决以下问题:已知圆C的圆心在x轴非负半轴上,半径为3,且与直线相切,点在直线上,过点作圆C的两条切线,切点分别为.
(1)求圆C的方程;
(2)当时,求线段AB的长;
(3)当点在直线上运动时,求线段AB长度的最小值.
14.已知圆C与y轴相切,圆心C在射线上,且截直线所得弦长为.
(1)求圆C的方程;
(2)已知点,直线与圆C交于A、B两点,是否存在m使得,若存在,求出m的值;若不存在,说明理由.
15.已知的内切圆的圆心在轴正半轴上,半径为,直线截圆所得的弦长为.
(1)求圆方程;
(2)若点的坐标为,求直线和的斜率;
(3)若,两点在轴上移动,且,求面积的最小值.
16.已知圆C经过坐标原点O,圆心在x轴正半轴上,且与直线相切.
(1)求圆C的标准方程;
(2)直线与圆C交于A,B两点.
①求k的取值范围;
②证明:直线OA与直线OB的斜率之和为定值.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.D
【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点共圆,且,根据 可知,当直线时,最小,求出以 为直径的圆的方程,根据圆系的知识即可求出直线的方程.
【详解】圆的方程可化为,点 到直线的距离为,所以直线 与圆相离.
依圆的知识可知,四点四点共圆,且,所以,而 ,
当直线时,, ,此时最小.
∴即 ,由解得, .
所以以为直径的圆的方程为,即 ,
两圆的方程相减可得:,即为直线的方程.
故选:D.
【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.
2.A
【分析】利用对称圆,把问题转化为两圆的位置关系问题进行处理.
【详解】根据题意,圆的圆心坐标为(0,1),半径为r,其关于直线y=x的对称圆的方程为,根据题意,圆与圆有交点,既可以是外切,也可以是相交,也可以是内切.
又圆,所以圆与圆的圆心距为,所以只需,解得.故B,C,D错误.
故选:A.
3.D
【分析】先求出圆的圆心和半径,根据已知条件可得圆心到直线的距离等于,即可求解.
【详解】由可得:,
所以圆心,半径,
由为等腰直角三角形知,
圆心到直线的距离,
所以,解得,
故选:D.
4.A
【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点共圆,且,根据 可知,当直线时,最小,求出以 为直径的圆的方程,根据圆系的知识即可求出直线的方程.
【详解】解:圆的方程可化为,点到直线的距离为,所以直线 与圆相离.
依圆的知识可知,四点四点共圆,且,
所以,而 ,
当直线时,, ,此时最小.
∴,即 ,由,解得.
所以以为直径的圆的方程为,
即,
两圆的方程相减可得:,即为直线的方程.
故选:A .
【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.
5.A
【分析】设,由得,即可知的轨迹为,要使圆上存在点,即圆与有交点,进而可得半径的范围.
【详解】设,则,,
∵,即,
∴,即在以原点为圆心,半径为1的圆上,
而圆的圆心为,半径为R,
∴圆上存在点,即圆与有交点,
∴.
故选:A
【点睛】关键点点睛:由及向量垂直的数量积公式即可确定的轨迹,要使圆上存在点,只需保证圆与的轨迹有交点即可.
6.A
【分析】建立直角坐标系,设,写出的坐标,利用列式得关于的等式,可得点的轨迹为以为圆心,以为半径的圆,写出直线的方程,计算和点距离直线的最小距离,代入三角形面积公式计算.
【详解】以的中点为原点,建立如图所示的直角坐标系,则,,,
设,因为,所以,得,
所以点的轨迹为以为圆心,以为半径的圆,当点距离直线距离最大时,面积最大,已知直线的方程为:,,点距离直线的最小距离为:,所以面积的最小值为.
故选:A
7.BC
【分析】由题知曲线Ω与轴围成的图形是一个半圆,一个矩形和两个四分之一圆,故此可写出各段圆弧所在圆的方程,然后根据圆的相关知识判断各选项即可.
【详解】,,所在圆的方程分别为,,.
曲线与轴围成的图形为一个半圆 一个矩形和两个圆,其面积为,故A错误;
设与的公切线方程为(,),则,
所以,,所以与的公切线的方程为,
即,故B正确;
由及两式相减得,
即公共弦所在直线方程,故C正确;
所在圆的方程为,圆心为,
圆心到直线的距离为,
则所求弦长为,故D错误.
故选:BC
8.BC
【分析】将圆的一般方程转化为标准方程即可得半径可判断A;利用几何法求出弦长可判断B;求出圆心到直线的距离再减去半径可判断C;求出圆的圆心和半径,比较圆心距与半径之和的大小可判断D,进而可得正确选项.
【详解】对于A:由可得,所以的半径为,故选项A不正确;
对于B:圆心为到轴的距离为,所以圆截轴所得的弦长为
,故选项B正确;
对于C:圆心到直线的距离为,所以圆上的点到直线的最小距离为,故选项C正确;
对于D:由可得,所以圆心,半径,因为,所以两圆相外切,故选项D不正确;
故选:BC.
9.
【解析】圆L与圆S关于原点对称,直线l过原点,求出圆L与圆S的圆心坐标,设出直线l方程,由三个弦长相等得直线方程,从而可得弦长d.
【详解】由题意圆与圆关于原点对称,设,则
即.
设方程为,则三个圆心到该直线的距离分别为:
,,,
则,
即有,解得,
则,即.
故答案为: .
【点睛】本题考查直线与圆的位置关系,考查直线与圆相交弦长问题.求出圆心到直线的距离,用勾股定理求得弦长是求圆弦长的常用方法.
10.
【分析】由直线:恒过定点,直线:恒过定点,且,可知在以为直径的圆上,要求的最大值,转化为在上找上一点,使最大,结合圆的性质即可求解
【详解】解:因为直线:恒过定点,直线:恒过定点,且,
所以两直线的交点在以为直径的圆上,且圆的方程为,
要求的最大值,转化为在上找上一点,在上找一点,使最大,
根据题意可知两圆的圆心距为,
所以的最大值为,
故答案为:
11.
【分析】根据条件得,再用圆心到直线距离表示三角形PAB面积,最后利用导数求最大值.
【详解】
设圆心到直线距离为,则
所以
令(负值舍去)
当时,;当时,,因此当时,取最大值,即取最大值为,
故答案为:
【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.
12.
【分析】先求得的方程,再根据圆心到切线的距离,半径和切线长的勾股定理求最小值即可
【详解】由题,直线的斜率为,故直线的斜率为,故的方程为,即.又到的距离,故切线长的最小值是
故答案为:
13.(1);
(2);
(3)4.
【分析】(1)根据圆的圆心和半径设圆的标准方程为,利用圆心到切线的距离等于圆的半径即可求出a;
(2)根据题意写出AB的方程,根据垂径定理即可求出弦长;
(3)根据题意求出AB经过的定点Q,当CQ垂直于AB时,AB最短.
(1)
由题,设圆C的标准方程为,
则,解得.
故圆C方程为;
(2)
根据题意可知,直线的方程为,即,
圆心C到直线的距离为,
故弦长;
(3)
设,则,又直线方程为:,
故直线过定点Q,
设圆心C到直线的距离为,则,
故当最大时,最短,而,故与垂直时最大,此时,,
∴线段长度的最小值4.
14.(1);(2).
【分析】(1)设圆C的方程为,圆C与y轴相切,则,圆心C在射线上,所以,根据弦长公式得,解方程组即可得结果;
(2)依题意得在线段的中垂线上,则,根据斜率关系即可求出参数值.
【详解】(1)设圆C的方程为
圆心C在射线上,所以
圆C与y轴相切,则
点到直线的距离 ,
由于截直线所得弦长为,所以
则得,又 所以(舍去),
故圆C的方程为;
(2)由(1)得,因为,
所以在线段的中垂线上,则,
因为,所以 解得
【点睛】圆的弦长的常用求法:
(1)几何法:求圆的半径为r,弦心距为d,弦长为l,则 ;
(2)代数方法:运用根与系数的关系及弦长公式:.
15.(1);(2);(3).
【分析】(1)设的内切圆的圆心,先求得圆心到直线的距离,再根据直线截圆所得的弦长为求解;
(2)当直线和的斜率不存在时,设直线方程为,易知不成立;当直线和的斜率存在时,设直线方程为,然后由圆心到直线的距离等于半径求解;
(3)根据,设,进而得到直线AC和直线 BC的斜率,写出直线AC和BC的方程,联立求得点C的坐标,进而得到坐标系的最小值求解.
【详解】(1)设的内切圆的圆心,
圆心到直线的距离为,
又因为直线截圆所得的弦长为,
所以,
解得,
所以圆方程;
(2)当直线和的斜率不存在时,设直线方程为,
则圆心到直线的距离 ,不成立,
当直线和的斜率存在时,设直线方程为,
即 ,
圆心到直线的距离 ,
解得;
(3)因为,设,
所以直线AC的斜率为:,
同理直线BC的斜率为: ,
所以直线AC的方程为:,
直线BC的方程为: ,
由,解得 ,
即,
又 ,
当时,点C的纵坐标取得最小值,
所以面积的最小值..
16.(1);(2)(ⅰ);(ⅱ)具体见解析.
【分析】(1)设出圆心,进而根据题意得到半径,然后根据圆与直线相切求出圆心,最后得到答案;
(2)(ⅰ)联立直线方程和圆的方程并化简,根据判别式大于零即可得到答案;
(ⅱ)设出两点坐标,进而通过根与系数的关系与坐标公式进行化简,即可得到答案.
【详解】(1)由题意,设圆心为,因为圆C过原点,所以半径r=a,
又圆C与直线相切,所以圆心C到直线的距离(负值舍去),所以圆 C的标准方程为:.
(2)(ⅰ)将直线l代入圆的方程可得:,因为有两个交点,
所以,即k的取值范围是.
(ⅱ)设,由根与系数的关系:,
所以.
即直线OA,OB斜率之和为定值.
答案第1页,共2页
答案第1页,共2页