中小学教育资源及组卷应用平台
第二十一章《一元二次方程》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一.选择题(共10小题,每题3分,共30分)
1.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是( )
A.x1=1,x2=3 B.x1=1,x2=﹣3
C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
2.已知(x2+y2)(x2+y2﹣1)﹣6=0,则x2+y2的值是( )
A.3或﹣2 B.﹣3或2 C.3 D.﹣2
3.方程x(x+1)(x﹣2)=0的解是( )
A.﹣1,2 B.1,﹣2 C.0,﹣1,2 D.0,1,﹣2
4.方程(2x+1)(9x+8)=1的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.无实数根 D.不能确定
5.若方程x2﹣5x﹣1=0的两根为x1、x2,则+的值为( )
A.5 B. C.﹣5 D.
6. 已知(m2+n2)(m2+n2+2)-8=0,则m2+n2的值为( )
A. -4或2 B .-2或4 C. 4 D. 2
7.若是关于x的一元二次方程的一个根,则a的值为( )
A.1 B. C.1或 D.或4
8.已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是( )
A. B.
C.且 D.
9.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡张,设参加活动的同学有人,根据题意,可列方程( )
A. B. C. D.
10.如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整幅挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )
A.x2+130x﹣1400=0 B.x2+65x﹣350=0
C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0
二、填空题(每题3分,共24分)
11.若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为 .
12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为 .
13.已知x1、x2是方程x2﹣3x﹣2=0的两个实根,则(x1﹣2)(x2﹣2)= .
14.关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是 .
15.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根为x1,x2,使得x1x2﹣x12﹣x22=﹣16成立,则k的值 .
16.如果m、n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2021= .
17.若关于x的一元二次方程没有实数根,则m的取值范围为___________.
18.某县2019年农民人均年收入为10000元,计划到2021年,农民人均年收入达到14400元.则人均年收入的平均增长率为__________.
三.解答题(共46分,19题6分,20 ---24题8分)
19.解方程:
(1)x2+2x﹣3=0; (2)2(5x﹣1)2=5(5x﹣1);
(3)(x+3)2﹣(2x﹣3)2=0; (4)3x2﹣4x﹣1=0.
20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.
21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.
22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.
23.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.
(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?
(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?
24.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
参考答案与试题解析
选择题(共10小题)
题号 1 2 3 4 5 6 7 8 9 10
答案 D C C A C B C C A A
二.填空题(共8小题)
11.若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为 .
【分析】根据一元二次方程的解的定义,把x=2n代入方程得到x2﹣2mx+2n=0,然后把等式两边除以n即可.
【解答】解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,
∴4n2﹣4mn+2n=0,
∴4n﹣4m+2=0,
∴m﹣n=.
故答案是:.
12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为 ﹣3 .
【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.
【解答】解:2x﹣4=0,
解得:x=2,
把x=2代入方程x2+mx+2=0得:
4+2m+2=0,
解得:m=﹣3.
故答案为:﹣3.
13.已知x1、x2是方程x2﹣3x﹣2=0的两个实根,则(x1﹣2)(x2﹣2)= ﹣4 .
【分析】根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4代入数值计算即可.
【解答】解:由于x1+x2=3,x1 x2=﹣2,
∴(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=﹣2﹣2×3+4=﹣4.
故本题答案为:﹣4.
14.关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是 x3=﹣4,x4=﹣1 .
【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.
【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),
∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=﹣2或x+2=1,
解得x=﹣4或x=﹣1.
故答案为:x3=﹣4,x4=﹣1.
15.解:∵关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根,
∴△=(2k+1)2﹣4(k2+2k)≥0,
解得k≤,
由根与系数的关系得x1+x2=2k+1,x1x2=k2+2k,
∵x1x2﹣x12﹣x22=﹣16.
∴x1x2﹣[(x1+x2)2﹣2x1x2]=﹣16,
即﹣(x1+x2)2+3x1 x2=﹣16,
∴﹣(2k+1)2+3(k2+2k)=﹣16,
整理得k2﹣2k﹣15=0,
解得k1=5(舍去),k2=﹣3.
∴k=﹣3,
故答案为﹣3.
16.解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,
所以m,n是x2﹣x﹣3=0的两个不相等的实数根,
则根据根与系数的关系可知:m+n=1,mn=﹣3,
又n2=n+3,
则2n2﹣mn+2m+2021
=2(n+3)﹣mn+2m+2021
=2n+6﹣mn+2m+2021
=2(m+n)﹣mn+2027
=2×1﹣(﹣3)+2027
=2+3+2027
=2032.
故答案为:2032.
17.
解:∵关于x的一元二次方程x2-3x-m=0没有实数根.
∴△<0,即(-3)2-4×1×(-m)<0,
解得,,
故答案为.
18.20%
解:设人均年收入的平均增长率为x,
依题意,得:10000(1+x)2=14400,
解得:或(舍去).
故答案为:20%.
三.解答题(共7小题)
19.解:(1)分解因式得:(x+3)(x﹣1)=0,
可得x+3=0或x﹣1=0,
解得:x1=﹣3,x2=1;
(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,
分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,
可得5x﹣1=0或10x﹣7=0,
解得:x1=0.2,x2=0.7;
(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,
可得3x=0或﹣x+6=0,
解得:x1=0,x2=6;
(4)这里a=3,b=﹣4,c=﹣1,
∵△=16+12=28>0,
∴x==,
解得:x1=,x2=.
20.解:设方程另一个根为x1,
根据题意得2x1=﹣6,解得x1=﹣3,
即方程的另一个根是﹣3.
21.解:(1)∵方程有两个实数根x1,x2,
∴△=(2k﹣2)2﹣4k2≥0,
解得k≤;
(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,
∵k≤,
∴2k﹣2<0,
又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.
解得k=4(不合题意,舍去)或k=﹣6,
∴k=﹣6.
22.解:当a=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+b=12,
∴b=8,
而4+4≠0,不符合题意;
当b=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+a=12,
而4+4=8,不符合题意;
当a=b时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴12=a+b,解得a=b=6,
∴m+2=36,
∴m=34.
23.解:(1)设平均增长率为a,根据题意得:
64(1+a)2=100
解得:a=0.25=25%或a=﹣2.25
四月份的销量为:100 (1+25%)=125(辆).
答:四月份的销量为125辆.
(2)设购进A型车x辆,则购进B型车辆,
根据题意得:2×≤x≤2.8×
解得:30≤x≤35
利润W=(700﹣500)x+(1300﹣1000)=9000+50x.
∵50>0,∴W随着x的增大而增大.
当x=35时,不是整数,故不符合题意,
∴x=34,此时=13(辆).
答:为使利润最大,该商城应购进34辆A型车和13辆B型车.
24.解:(1)设条纹的宽度为x米.依题意得
2x×5+2x×4﹣4x2=×5×4,
解得:x1=(不符合,舍去),x2=.
答:配色条纹宽度为米.
(2)条纹造价:×5×4×200=850(元)
其余部分造价:(1﹣)×4×5×100=1575(元)
∴总造价为:850+1575=2425(元)
答:地毯的总造价是2425元.