高考真题微专题 ----三角函数与解三角形
第二节 与
1.(2022·全国甲(文)T5)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是( )
A. B. C. D.
2.(2022·全国甲(理)T11)设函数在区间恰有三个极值点、两个零点,则的取值范围是( )
A. B. C. D.
3.(2022·新高考Ⅰ卷T6) 记函数的最小正周期为T.若,且的图象关于点中心对称,则( )
A. 1 B. C. D. 3
4.(2022·北京卷T5) 已知函数,则( )
A. 在上单调递减 B. 在上单调递增
C. 在上单调递减 D. 在上单调递增
5.(2022·浙江卷T6) 为了得到函数的图象,只要把函数图象上所有的点( )
A. 向左平移个单位长度 B. 向右平移个单位长度
C 向左平移个单位长度 D. 向右平移个单位长度
6.(2022·全国乙(理)T15) 记函数的最小正周期为T,若,为的零点,则的最小值为____________.
7.(2022·新高考Ⅱ卷T9)函数的图象以中心对称,则( )(多选)
A. 在单调递减 B. 在有2个极值点
C. 直线是一条对称轴 D. 直线是一条切线
8.(2021年全国高考乙卷数学(文)试题)函数的最小正周期和最大值分别是( )
A.和 B.和2 C.和 D.和2
9.(2021年全国高考乙卷数学(理)试题)把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )
A. B. C. D.
10.(2021年全国新高考Ⅰ卷数学试题)下列区间中,函数单调递增的区间是( )
A. B. C. D..
11..(2021年全国高考甲卷数学(文)试题)已知函数的部分图像如图所示,则_______________.
12.(2021年全国高考甲卷数学(理)试题)已知函数的部分图像如图所示,则满足条件的最小正整数x为________.
13.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设函数在的图像大致如下图,则f(x)的最小正周期为( )
A. B. C. D.
14.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))已知函数f(x)=sinx+,则()
A.f(x)的最小值为2 B.f(x)的图象关于y轴对称
C.f(x)的图象关于直线对称 D.f(x)的图象关于直线对称高考真题微专题 ----三角函数与解三角形
第二节 与
1.(2022·全国甲(文)T5)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是( )
A. B. C. D.
【答案】C
【解析】
【分析】先由平移求出曲线的解析式,再结合对称性得,即可求出的最小值.
【详解】由题意知:曲线为,又关于轴对称,则,
解得,又,故当时,的最小值为.
故选:C.
2.(2022·全国甲(理)T11)设函数在区间恰有三个极值点、两个零点,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】由的取值范围得到的取值范围,再结合正弦函数的性质得到不等式组,解得即可.
【详解】解:依题意可得,因为,所以,
要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:
则,解得,即.
故选:C.
3.(2022·新高考Ⅰ卷T6) 记函数的最小正周期为T.若,且的图象关于点中心对称,则( )
A. 1 B. C. D. 3
【答案】A
【解析】
【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.
【详解】由函数的最小正周期T满足,得,解得,
又因为函数图象关于点对称,所以,且,
所以,所以,,
所以.
故选:A
4.(2022·北京卷T5) 已知函数,则( )
A. 在上单调递减 B. 在上单调递增
C. 在上单调递减 D. 在上单调递增
【答案】C
【解析】
【分析】化简得出,利用余弦型函数的单调性逐项判断可得出合适的选项.
【详解】因为.
对于A选项,当时,,则在上单调递增,A错;
对于B选项,当时,,则在上不单调,B错;
对于C选项,当时,,则在上单调递减,C对;
对于D选项,当时,,则在上不单调,D错.
故选:C.
5.(2022·浙江卷T6) 为了得到函数的图象,只要把函数图象上所有的点( )
A. 向左平移个单位长度 B. 向右平移个单位长度
C 向左平移个单位长度 D. 向右平移个单位长度
【答案】D
【解析】
【分析】根据三角函数图象的变换法则即可求出.
【详解】因为,所以把函数图象上的所有点向右平移个单位长度即可得到函数的图象.
故选:D.
6.(2022·全国乙(理)T15) 记函数的最小正周期为T,若,为的零点,则的最小值为____________.
【答案】
【解析】
【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而得解;
【详解】解: 因为,(,)
所以最小正周期,因为,
又,所以,即,
又为的零点,所以,解得,
因为,所以当时;
故答案为:
7.(2022·新高考Ⅱ卷T9)函数的图象以中心对称,则( )(多选)
A. 在单调递减
B. 在有2个极值点
C. 直线是一条对称轴
D. 直线是一条切线
【答案】AD
【解析】
【分析】根据三角函数的性质逐个判断各选项,即可解出.
【详解】由题意得:,所以,,
即,
又,所以时,,故.
对A,当时,,由正弦函数图象知在上是单调递减;
对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;
对C,当时,,,直线不是对称轴;
对D,由得:,
解得或,
从而得:或,
所以函数在点处的切线斜率为,
切线方程为:即.
故选:AD.
8.(2021年全国高考乙卷数学(文)试题)函数的最小正周期和最大值分别是( )
A.和 B.和2 C.和 D.和2
【答案】C
【分析】由题,,所以的最小正周期为,最大值为.
故选:C.
9.(2021年全国高考乙卷数学(理)试题)把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )
A. B.
C. D.
【答案】B
【分析】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到的图象,再把所得曲线向右平移个单位长度,应当得到的图象,
根据已知得到了函数的图象,所以,
令,则,
所以,所以;
解法二:由已知的函数逆向变换,
第一步:向左平移个单位长度,得到的图象,
第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,
即为的图象,所以.
故选:B.
10.(2021年全国新高考Ⅰ卷数学试题)下列区间中,函数单调递增的区间是( )
A. B. C. D.
【答案】A
【分析】因为函数的单调递增区间为,
对于函数,由,
解得,
取,可得函数的一个单调递增区间为,
则,,A选项满足条件,B不满足条件;
取,可得函数的一个单调递增区间为,
且,,CD选项均不满足条件.
故选:A.
11..(2021年全国高考甲卷数学(文)试题)已知函数的部分图像如图所示,则_______________.
【答案】
【分析】由题意可得:,
当时,,
令可得:,
据此有:.
故答案为:.
12.(2021年全国高考甲卷数学(理)试题)已知函数的部分图像如图所示,则满足条件的最小正整数x为________.
【答案】2
【分析】由图可知,即,所以;
由五点法可得,即;
所以.
因为,;
所以由可得或;
因为,所以,
方法一:结合图形可知,最小正整数应该满足,即,
解得,令,可得,
可得的最小正整数为2.
方法二:结合图形可知,最小正整数应该满足,又,符合题意,可得的最小正整数为2.
故答案为:2.
13.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设函数在的图像大致如下图,则f(x)的最小正周期为( )
A. B.
C. D.
【答案】C
【分析】由图可得:函数图象过点,
将它代入函数可得:
又是函数图象与轴负半轴的第一个交点,
所以,解得:
所以函数的最小正周期为
故选:C
14.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))已知函数f(x)=sinx+,则()
A.f(x)的最小值为2 B.f(x)的图象关于y轴对称
C.f(x)的图象关于直线对称 D.f(x)的图象关于直线对称
【答案】D
【分析】可以为负,所以A错;
关于原点对称;
故B错;
关于直线对称,故C错,D对
故选:D