第2章直角三角形的边角关系(选择、填空题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
一.选择题(共13小题)
1.(2022 济南)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )
(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)
A.28m B.34m C.37m D.46m
2.(2022 滨州)下列计算结果,正确的是( )
A.(a2)3=a5 B.=3 C.=2 D.cos30°=
3.(2021 济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)
A.188m B.269m C.286m D.312m
4.(2021 德州)某商场准备改善原有楼梯的安全性能,把坡角由37°减至30°,已知原楼梯长为5米,调整后的楼梯会加长( )(参考数据:sin37°≈,cos37°≈,tan37°≈).
A.6米 B.3米 C.2米 D.1米
5.(2021 日照)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是( )
A.(10+20)m B.(10+10)m C.20m D.40m
6.(2021 潍坊)如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是( )
A.15° B.30° C.45° D.60°
7.(2021 烟台)如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:
按键的结果为m;
按键的结果为n;
按键的结果为k.
下列判断正确的是( )
A.m=n B.n=k C.m=k D.m=n=k
8.(2021 威海)若用我们数学课本上采用的科学计算器计算sin36°18′,按键顺序正确的是( )
A.
B.
C.
D.
9.(2021 东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是( )
A.
B.
C.
D.
10.(2021 泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)( )
A.136.6米 B.86.7米 C.186.7米 D.86.6米
11.(2020 淄博)已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是( )
A. B. C. D.
12.(2020 聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为( )
A. B. C. D.
13.(2020 济宁)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是( )
A.15海里 B.20海里 C.30海里 D.60海里
二.填空题(共6小题)
14.(2022 泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角∠DPC=30°,已知窗户的高度AF=2m,窗台的高度CF=1m,窗外水平遮阳篷的宽AD=0.8m,则CP的长度为 (结果精确到0.1m).
15.(2022 滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sinA的值为 .
16.(2021 烟台)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为 米.
(结果精确到1米,参考数据:≈1.41,≈1.73)
17.(2020 泰安)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移 m时,才能确保山体不滑坡.(取tan50°≈1.2)
18.(2020 枣庄)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
19.(2020 济宁)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:,则斜坡AB的长是 米.
第2章直角三角形的边角关系(选择、填空题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
参考答案与试题解析
一.选择题(共13小题)
1.(2022 济南)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )
(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)
A.28m B.34m C.37m D.46m
【解答】解:由题意可知:AB⊥BC,
在Rt△ADB中,∠B=90°,∠ADB=58°,
∵tan∠ADB=tan58°=,
∴BD=≈(m),
在Rt△ACB中,∠B=90°,∠C=22°,
∵CD=70m,
∴BC=CD+BD=(70+)m,
∴AB=BC×tanC≈(70+)×0.40(m),
解得:AB≈37m,
答:该建筑物AB的高度约为37m.
故选:C.
2.(2022 滨州)下列计算结果,正确的是( )
A.(a2)3=a5 B.=3 C.=2 D.cos30°=
【解答】解:A. (a2)=a6,所以A选项不符合题意;
B. ==2,所以B选项不符合题意;
C. =2,所以C选项符合题意;
D.cos30°=,所以D选项不符合题意;
故选:C.
3.(2021 济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)
A.188m B.269m C.286m D.312m
【解答】解:由题意得:∠N=43°,∠M=35°,AO=135m,BO=AO﹣AB=95m,
在Rt△AON中,
tanN==tan43°,
∴NO=≈150m,
在Rt△BOM中,
tanM==tan35°,
∴MO=≈135.7m,
∴MN=MO+NO=135.7+150≈286m.
故选:C.
4.(2021 德州)某商场准备改善原有楼梯的安全性能,把坡角由37°减至30°,已知原楼梯长为5米,调整后的楼梯会加长( )(参考数据:sin37°≈,cos37°≈,tan37°≈).
A.6米 B.3米 C.2米 D.1米
【解答】解:在Rt△BAD中,AB=5米,∠BAD=37°,
则BD=AB sin∠BAD≈5×=3(米),
在Rt△BCD中,∠C=30°,
∴BC=2BD=6(米),
则调整后的楼梯会加长:6﹣5=1(米),
故选:D.
5.(2021 日照)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是( )
A.(10+20)m B.(10+10)m C.20m D.40m
【解答】解:过D作DF⊥BC于F,DH⊥AB于H,
∴DH=BF,BH=DF,
∵斜坡的斜面坡度i=1:,
∴=1:,
设DF=xm,CF=xm,
∴CD==2x=20m,
∴x=10,
∴BH=DF=10m,CF=10m,
∴DH=BF=(10+30)m,
∵∠ADH=30°,
∴AH=DH=×(10+30)=(10+10)m,
∴AB=AH+BH=(20+10)m,
故选:A.
6.(2021 潍坊)如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是( )
A.15° B.30° C.45° D.60°
【解答】解:如图,作CD⊥平面镜,垂足为G,交地面于D.
∵EF⊥平面镜,
∴CD∥EF,
∴∠CDH=∠EFH=α,
根据题意可知:AG∥DF,
∴∠AGC=∠CDH=α,
∴∠AGC=α,
∵∠AGC=AGB=×60°=30°,
∴α=30°.
故选:B.
7.(2021 烟台)如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:
按键的结果为m;
按键的结果为n;
按键的结果为k.
下列判断正确的是( )
A.m=n B.n=k C.m=k D.m=n=k
【解答】解:m=23﹣=8﹣4=4;
n=﹣22=4﹣4=0;
k=﹣cos60°=﹣=4;
∴m=k,
故选:C.
8.(2021 威海)若用我们数学课本上采用的科学计算器计算sin36°18′,按键顺序正确的是( )
A.
B.
C.
D.
【解答】解:采用的科学计算器计算sin36°18′,按键顺序正确的是D选项中的顺序,
故选:D.
9.(2021 东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是( )
A.
B.
C.
D.
【解答】解:在△ABC中,因为∠C=90°,
所以tanB=,
因为∠B=42°,BC=8,
所以AC=BC tanB=8×tan42°.
故选:D.
10.(2021 泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)( )
A.136.6米 B.86.7米 C.186.7米 D.86.6米
【解答】解:如图作DH⊥AB于H,延长DE交BC于F.
在Rt△ADH中,AD=130米,DH:AH=1:2.4,
∴DH=50(米),
∵四边形DHBF是矩形,
∴BF=DH=50(米),
在Rt△EFB中,∠BEF=45°,
∴EF=BF=50(米),
在Rt△EFC中,FC=EF tan60°,
∴CF=50×≈86.6(米),
∴BC=BF+CF=136.6(米).
故选:A.
11.(2020 淄博)已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是( )
A. B. C. D.
【解答】解:∵已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0.9816,
∴按下的第一个键是2ndF.
故选:D.
12.(2020 聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为( )
A. B. C. D.
【解答】解:如图,过点A作AH⊥BC于H.
在Rt△ACH中,∵AH=4,CH=3,
∴AC===5,
∴sin∠ACH==,
故选:D.
13.(2020 济宁)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是( )
A.15海里 B.20海里 C.30海里 D.60海里
【解答】解:如图.
根据题意得:∠CBD=84°,∠CAB=42°,
∴∠C=∠CBD﹣∠CAB=42°=∠CAB,
∴BC=AB,
∵AB=15×2=30(海里),
∴BC=30(海里),
即海岛B到灯塔C的距离是30海里.
故选:C.
二.填空题(共6小题)
14.(2022 泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角∠DPC=30°,已知窗户的高度AF=2m,窗台的高度CF=1m,窗外水平遮阳篷的宽AD=0.8m,则CP的长度为 4.4m (结果精确到0.1m).
【解答】解:根据图形可知AD∥CP.
∵AD∥CP,∠DPC=30°,
在Rt△ABD中,∠ADB=30°,AD=0.8m,
∴AB=AD×tan∠ADB=0.8×≈0.46m.
∵AB=0.46m,AF=2m,CF=1m,
∴BC=2.54m,
在Rt△BCP中,∠BPC=30°,BC=2.54m,
∴CP=.
答:CP的长度约为4.4m.
故答案为:4.4m.
15.(2022 滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sinA的值为 .
【解答】解:如图所示:∵∠C=90°,AC=5,BC=12,
∴AB==13,
∴sinA=.
故答案为:.
16.(2021 烟台)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为 14 米.
(结果精确到1米,参考数据:≈1.41,≈1.73)
【解答】解:过O点作OC⊥AB于C点,
∵当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,
∴AC=45米,∠CAO=30°,
∴OC=AC tan30°=(米),
∴旗杆的高度=40﹣15≈14(米),
故答案为:14.
17.(2020 泰安)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移 10 m时,才能确保山体不滑坡.(取tan50°≈1.2)
【解答】解:在BC上取点F,使∠FAE=50°,过点F作FH⊥AD于H,
∵BF∥EH,BE⊥AD,FH⊥AD,
∴四边形BEHF为矩形,
∴BF=EH,BE=FH,
∵斜坡AB的坡比为12:5,
∴=,
设BE=12xm,则AE=5xm,
由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,
解得,x=2,
∴AE=10m,BE=24m,
∴FH=BE=24m,
在Rt△FAH中,tan∠FAH=,
∴AH=≈20(m),
∴BF=EH=AH﹣AE=10(m),
∴坡顶B沿BC至少向右移10m时,才能确保山体不滑坡,
故答案为:10.
18.(2020 枣庄)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 1.5 m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
【解答】解:∵AB=AC=2m,AD⊥BC,
∴∠ADC=90°,
∴AD=AC sin50°=2×0.77≈1.5(m),
故答案为1.5.
19.(2020 济宁)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:,则斜坡AB的长是 20 米.
【解答】解:如图所示:过点A作AF⊥BC于点F,
∵斜面坡度为1:,
∴tan∠ABF===,
∴∠ABF=30°,
∵在P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,
∴∠HPB=30°,∠APB=45°,
∴∠HBP=60°,
∴∠PBA=90°,∠BAP=45°,
∴PB=AB,
∵PH=30m,sin60°===,
解得:PB=20(m),
故AB=20m,
故答案为:20.