30.4 二次函数的应用
— 选择专练 —
1、若无论x为何值,多项式mx2﹣2x﹣2的值恒为负,则m的取值范围是( )
A.m<0 B.m<﹣ C.﹣<m<0 D.0<m<
2、如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P,点Q同时从点B出发,点P以2cm/s的速度沿B→A→C运动,终点为C,点Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=﹣t2+t(4≤t≤7);③线段PQ的长度的最大值为;④若△PQC与△ABC相似,则t=秒,其中正确的说法是( )
A.①②④ B.②③④ C.①③④ D.①②③
3、某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是( )
A.y=﹣(x﹣)2+3 B.y=﹣3(x+)2+3
C.y=﹣12(x﹣)2+3 D.y=﹣12(x+)2+3
4、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
A.正方体集装箱的体积ym3,棱长xm
B.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm
C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm
5、如图,李大爷用24米长的篱笆靠墙围成一个长方形(ABCD)菜园,若菜园靠墙的一边(AD)长为x(米),那么菜园的面积y(平方米)与x的关系式为( )
A. B.y=x(12﹣x) C. D.y=x(24﹣x)
6、据省统计局公布的数据,合肥市2021年第一季度GDP总值约为2.4千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是( )
A.y=2.4(1+2x)
B.y=2.4(1﹣x)2
C.y=2.4(1+x)2
D.y=2.4+2.4(1+x)+2.4(1+x)
7、某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y平方米,则y关于x的函数关系式为( )
A.y=x(40﹣x) B.y=x(18﹣x)
C.y=x(40﹣2x) D.y=2x(40﹣2x)
8、为方便市民进行垃圾分类投放,某环保公司第一个月投放a个垃圾桶,计划第三个月投放垃圾桶y个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,那么y与x的函数关系是( )
A.y=a(1+x)2 B.y=a(1﹣x)2 C.y=(1﹣x)2+a D.y=x2+a
9、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
A.正方体集装箱的体积ym3,棱长xm
B.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm
C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
D.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm
10、矩形的周长为12cm,则它的面积s(cm2)关于其中一边长x(cm)的函数关系式是( )
A.s=6x﹣x2 B.s=12﹣x C.s=12﹣2x D.s=24﹣2x
11、商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价上涨1元,则每星期就会少卖10件.每件商品的售价上涨x元(x为正整数),每星期销售的利润为y元,则y与x的函数关系式为( )
A.y=10(200﹣10x) B.y=200(10+x)
C.y=10(200﹣10x)2 D.y=(10+x)(200﹣10x)
12、一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x的函数关系式为( )
A.y=100(1﹣x) B.y=100﹣x2
C.y=100(1+x)2 D.y=100(1﹣x)2
13、今年由于受新型冠状病毒的影响,一次性医用口罩的销量剧增.某药店一月份销售量是5000枚,二、三两个月销售量连续增长.若月平均增长率为x,则该药店三月份销售口罩枚数y(枚)与x的函数关系式是( )
A.y=5000(1+x) B.y=5000(1+x)2
C.y=5000(1+x2) D.y=5000(1+2x)
14、某商品的进价为每件60元,现在的售价为每件80元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是( )
A.y=200﹣10x B.y=(200﹣10x)(80﹣60﹣x)
C.y=(200+10x)(80﹣60﹣x) D.y=(200﹣10x)(80﹣60+x)
15、在某种病毒的传播过程中,每轮传染平均1人会传染x个人,若最初2个人感染该病毒,经过两轮传染,共有y人感染,则y与x的函数关系式为( )
A.y=2(1+x)2 B.y=(2+x)2 C.y=2+2x2 D.y=(1+2x)2
16、如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是( )
A.①②③ B.②③ C.①③④ D.②④
17、定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l:y=x+b经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn) (n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n为正整数).若x1=d(0<d<1),当d为( )时,这组抛物线中存在美丽抛物线.
A.或 B.或 C.或 D.
18、在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大,收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是( )
A.P→A→Q B.P→B→Q C.P→C→Q D.P→D→Q
19、如图,已知抛物线经过点B(﹣1,0),A(4,0),与y轴交于点C(0,2),P为AC上的一个动点,则有以下结论:
①抛物线的对称轴为直线x=;
②抛物线的最大值为;
③∠ACB=90°;
④OP的最小值为.
则正确的结论为( )
A.①②④ B.①② C.①②③ D.①③④
20、一位运动员在离篮筐水平距离4m处起跳投篮,球运行路线可看作抛物线,当球离开运动员的水平距离为1m时,它与篮筐同高,球运行中的最大高度为3.5m,最后准确落入篮筐,已知篮筐到地面的距离为3.05m,该运动员投篮出手点距离地面的高度为( )
A.1.5 m B.2m C.2.25 m D.2.5 m30.4 二次函数的应用
— 选择专练 —
> > > 精品解析 < < <
1、若无论x为何值,多项式mx2﹣2x﹣2的值恒为负,则m的取值范围是( )
A.m<0 B.m<﹣ C.﹣<m<0 D.0<m<
[思路分析]设y=mx2﹣2x﹣2,函数值恒为负,则抛物线开口向下,且抛物线与x轴没有交点,得出关于m的不等式组,求解即可得出m的取值范围.
[答案详解]解:设y=mx2﹣2x﹣2,
∵函数值恒为负,
∴,
解得:m<,
故选:B.
[经验总结]本题考查了二次函数的应用,掌握二次函数的图象与性质是解决问题的关键.
2、如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P,点Q同时从点B出发,点P以2cm/s的速度沿B→A→C运动,终点为C,点Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=﹣t2+t(4≤t≤7);③线段PQ的长度的最大值为;④若△PQC与△ABC相似,则t=秒,其中正确的说法是( )
A.①②④ B.②③④ C.①③④ D.①②③
[思路分析]①正确.利用图中信息,求出AB,再利用勾股定理求出AC即可.
②正确.如图2中,作PH⊥BC于H.则PH=PC sinC=(14﹣2t),y= BQ PH= t (14﹣2t)=﹣t2+t(4≤t≤7).
③错误.当点P与A重合时,PQ的值最大.根据题意求得PQ的最大值.
④正确.分两种情形讨论求解即可.
[答案详解]解:如图1中,作AD⊥BC于D.
由题意AB=4×2=8cm,
在Rt△ABC中,BC=10cm,AB=8cm,
∴AC===6cm,故①正确,
∵ BC AD= AB AC,
∴AD=(cm),
由题意当点P运动到A时,S△BPQ=(cm2),
∴×BQ×=,
∴BQ=4(cm),
∴点Q的运动速度为1cm/s,
当点P与A重合时,PQ的值最大,
∵BD==(cm),
∴QD=BD﹣BQ=﹣4=(cm),
∴PQ===(cm),
∴PQ的最大值为,故③错误.
如图2中,作PH⊥BC于H.则PH=PC sinC=(14﹣2t),
∴y= BQ PH= t (14﹣2t)=﹣t2+t(4≤t≤7).故②正确,
如图2中,若△PQC与△ABC相似,点P只有在线段AC上,
如果=,则△CPQ∽△CAB,
∴=,
∴t=.
如果=时,△CPQ∽△CBA,
∴=,
解得t=﹣8不合题意.
综上所述,t=s时,△PQC与△ABC相似.故④正确,
故选:A.
[经验总结]本题考查二次函数综合题、相似三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加辅助线构造直角三角形解决问题,学会读懂图象信息解决问题,属于中考选择题中的压轴题.
3、某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是( )
A.y=﹣(x﹣)2+3 B.y=﹣3(x+)2+3
C.y=﹣12(x﹣)2+3 D.y=﹣12(x+)2+3
[思路分析]待定系数法求解可得.
[答案详解]解:根据题意设函数解析式为y=a(x﹣)2+3,
将点(0,0)代入,得:a+3=0,
解得:a=﹣12,
∴函数解析式为y=﹣12(x﹣)2+3,
故选:C.
[经验总结]本题主要考查待定系数法求函数解析式,熟练掌握待定系数法是解题的关键.
4、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
A.正方体集装箱的体积ym3,棱长xm
B.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm
C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm
[思路分析]根据二次函数的定义逐项判断即可.
[答案详解]解:A.正方体集装箱的体积ym3,棱长xm,则y=x3,故不是二次函数;
B.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm,则y=14πx2,故是二次函数;
C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤,则y=,故不是二次函数;
D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm,则y=南京与上海之间的距离﹣108x,故不是二次函数.
故选:B.
[经验总结]本题考查二次函数的实际应用,熟练掌握二次函数的定义是解题关键.
5、如图,李大爷用24米长的篱笆靠墙围成一个长方形(ABCD)菜园,若菜园靠墙的一边(AD)长为x(米),那么菜园的面积y(平方米)与x的关系式为( )
A. B.y=x(12﹣x) C. D.y=x(24﹣x)
[思路分析]根据AD的边长为x米,可以得出AB的长为米,然后根据矩形的面积公式即可求出函数关系式.
[答案详解]解:∵AD的边长为x米,而菜园ABCD是矩形菜园,
∴AB=米,
∵菜园的面积=AD×AB=x ,
∴y=.
故选:C.
[经验总结]本题考查了根据实际问题列二次函数关系式.解题的关键是能够正确利用矩形的周长公式用含x的代数式表示AB,然后利用矩形的面积公式即可解决问题.
6、据省统计局公布的数据,合肥市2021年第一季度GDP总值约为2.4千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是( )
A.y=2.4(1+2x)
B.y=2.4(1﹣x)2
C.y=2.4(1+x)2
D.y=2.4+2.4(1+x)+2.4(1+x)
[思路分析]根据平均每个季度GDP增长的百分率为x,第二季度季度GDP总值约为2.4(1+x)元,第三季度GDP总值为2.4(1+x)2元,则函数解析式即可求得.
[答案详解]解:根据题意得,
y关于x的函数表达式是:y=2.4(1+x)2.
故选:C.
[经验总结]此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.
7、某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y平方米,则y关于x的函数关系式为( )
A.y=x(40﹣x) B.y=x(18﹣x)
C.y=x(40﹣2x) D.y=2x(40﹣2x)
[思路分析]先用含x的代数式表示苗圃园与墙平行的一边长,再根据面积=长×宽列出y关于x的函数关系式.
[答案详解]解:设这个苗圃园垂直于墙的一边长为x米,则苗圃园与墙平行的一边长为(40﹣2x)米.
依题意可得:y=x(40﹣2x).
故选:C.
[经验总结]本题考查了由实际问题列二次函数关系式,解题的关键是明确题意,找出所求问题需要的条件.
8、为方便市民进行垃圾分类投放,某环保公司第一个月投放a个垃圾桶,计划第三个月投放垃圾桶y个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,那么y与x的函数关系是( )
A.y=a(1+x)2 B.y=a(1﹣x)2 C.y=(1﹣x)2+a D.y=x2+a
[思路分析]主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,然后根据已知条件可得出方程.
[答案详解]解:设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,
依题意得第三个月投放垃圾桶a(1+x)2辆,
则y=a(1+x)2.
故选:A.
[经验总结]此题主要考查了根据实际问题列二次函数关系式,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
9、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
A.正方体集装箱的体积ym3,棱长xm
B.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm
C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
D.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm
[思路分析]根据各个选项中的语句,可以写出y与x的函数关系式,然后即可判断哪个选项符合题意.
[答案详解]解:A.正方体集装箱的体积ym3,棱长xm,则y=x3,y与x不是二次函数,不符合题意;
B.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm,则y=108x,y与x不是二次函数,不符合题意;
C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤,则y=,y与x不是二次函数,不符合题意;
D.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm,则y=14πx2,y与x是二次函数,符合题意;
故选:D.
[经验总结]本题考查二次函数的应用、一次函数的应用、反比例函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.
10、矩形的周长为12cm,则它的面积s(cm2)关于其中一边长x(cm)的函数关系式是( )
A.s=6x﹣x2 B.s=12﹣x C.s=12﹣2x D.s=24﹣2x
[思路分析]根据矩形周长公式,可得另一条边的长,根据矩形的面积公式,可得函数解析式.
[答案详解]解:∵矩形的周长为12cm,其中一边长为xcm,
∴矩形另一条边的长为(6﹣x)cm,
∴矩形面积s=x(6﹣x),
即s=6x﹣x2.
故选:A.
[经验总结]本题考查了根据实际问题列二次函数关系式,利用矩形周长公式得出另一条边的长以及利用矩形的面积公式得出函数解析式是解题关键.
11、商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价上涨1元,则每星期就会少卖10件.每件商品的售价上涨x元(x为正整数),每星期销售的利润为y元,则y与x的函数关系式为( )
A.y=10(200﹣10x) B.y=200(10+x)
C.y=10(200﹣10x)2 D.y=(10+x)(200﹣10x)
[思路分析]直接利用销量×每件利润=总利润,进而得出函数关系式.
[答案详解]解:由题意可得,y与x的函数关系式为:
y=(60﹣50+x)(200﹣10x)
=(10+x)(200﹣10x).
故选:D.
[经验总结]此题主要考查了根据实际问题列二次函数关系式,正确表示出销量是解题关键.
12、一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x的函数关系式为( )
A.y=100(1﹣x) B.y=100﹣x2
C.y=100(1+x)2 D.y=100(1﹣x)2
[思路分析]根据两年后机器价值=机器原价值×(1﹣折旧百分比)2可得函数解析式.
[答案详解]解:根据题意知y=100(1﹣x)2,
故选:D.
[经验总结]本题主要考查根据实际问题列二次函数关系式,根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
13、今年由于受新型冠状病毒的影响,一次性医用口罩的销量剧增.某药店一月份销售量是5000枚,二、三两个月销售量连续增长.若月平均增长率为x,则该药店三月份销售口罩枚数y(枚)与x的函数关系式是( )
A.y=5000(1+x) B.y=5000(1+x)2
C.y=5000(1+x2) D.y=5000(1+2x)
[思路分析]设出二、三月份的平均增长率,则二月份的市场需求量是5000(1+x),三月份的产量是5000(1+x)2,据此列函数关系式即可.
[答案详解]解:该药店三月份销售口罩枚数y(枚)与x的函数关系式是:y=5000(1+x)2.
故选:B.
[经验总结]本题考查了根据实际问题抽象出二次函数,解题的关键是正确列出二次函数关系式.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.
14、某商品的进价为每件60元,现在的售价为每件80元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是( )
A.y=200﹣10x B.y=(200﹣10x)(80﹣60﹣x)
C.y=(200+10x)(80﹣60﹣x) D.y=(200﹣10x)(80﹣60+x)
[思路分析]由每件涨价x元,可得出销售每件的利润为(80﹣60+x)元,每星期的销售量为(200﹣10x),再利用每星期售出商品的利润=销售每件的利润×每星期的销售量,即可得出结论.
[答案详解]解:∵每涨价1元,每星期要少卖出10件,每件涨价x元,
∴销售每件的利润为(80﹣60+x)元,每星期的销售量为(200﹣10x),
∴每星期售出商品的利润y=(200﹣10x)(80﹣60+x).
故选:D.
[经验总结]本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出y与x之间的函数关系式.
15、在某种病毒的传播过程中,每轮传染平均1人会传染x个人,若最初2个人感染该病毒,经过两轮传染,共有y人感染,则y与x的函数关系式为( )
A.y=2(1+x)2 B.y=(2+x)2 C.y=2+2x2 D.y=(1+2x)2
[思路分析]设每轮传染中平均一个人传染x个人,根据经过两轮传染后共有y人患了这种传染病,即可得出y与x的函数关系式.
[答案详解]解:根据题意可得,y与x的函数关系式为:y=2+2x+(2+2x)x=2(1+x)2.
故选:A.
[经验总结]此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出传染人数是解题关键.
16、如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是( )
A.①②③ B.②③ C.①③④ D.②④
[思路分析]据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.
[答案详解]解:根据图(2)可得,当点P到达点E时,点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,
∴BC=BE=5,
∴AD=BE=5,故①小题正确;
又∵从M到N的变化是2,
∴ED=2,
∴AE=AD﹣ED=5﹣2=3,
在Rt△ABE中,AB===4,
∴cos∠ABE==,故②小题错误;
过点P作PF⊥BC于点F,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB==,
∴PF=PBsin∠PBF=t,
∴当0<t≤5时,y=BQ PF=t t=t2,故③小题正确;
当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,
PQ=CD﹣PD=4﹣=,
∵=,==,
∴=,
又∵∠A=∠Q=90°,
∴△ABE∽△QBP,故④小题正确.
综上所述,正确的有①③④.
故选:C.
[经验总结]本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.
17、定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l:y=x+b经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn) (n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n为正整数).若x1=d(0<d<1),当d为( )时,这组抛物线中存在美丽抛物线.
A.或 B.或 C.或 D.
[思路分析]由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半.又0<d<1,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的定点纵坐标必定小于1.
[答案详解]解:直线l:y=x+b经过点M(0,),则b=;
∴直线l:y=x+.
由抛物线的对称性知:抛物线的顶点与x轴的两个交点构成的直角三角形必为等腰直角三角形;
∴该等腰三角形的高等于斜边的一半.
∵0<d<1,
∴该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1);
∵当x=1时,y1=×1+=<1,
当x=2时,y2=×2+=<1,
当x=3时,y3=×3+=>1,
∴美丽抛物线的顶点只有B1、B2.
①若B1为顶点,由B1(1,),则d=1﹣=;
②若B2为顶点,由B2(2,),则d=1﹣[(2﹣)﹣1]=,
综上所述,d的值为或时,存在美丽抛物线.
故选:B.
[经验总结]考查了二次函数综合题,该题是新定义题型,重点在于读懂新定义或新名词的含义.利用抛物线的对称性找出相应的等腰直角三角形是解答该题的关键.
18、在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大,收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是( )
A.P→A→Q B.P→B→Q C.P→C→Q D.P→D→Q
[思路分析]分类讨论投篮线路经过A,B,C,D四个点时篮球上升阶段的水平距离求解.
[答案详解]解:B,D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;
A,B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;
同理可知C点路线优于A点路线,
综上:P→B→Q是被“盖帽”的可能性最大的线路.
故选:B.
[经验总结]本题考查二次函数图象上点的坐标特征,解题关键是理解题意,通过分类讨论求解.
19、如图,已知抛物线经过点B(﹣1,0),A(4,0),与y轴交于点C(0,2),P为AC上的一个动点,则有以下结论:
①抛物线的对称轴为直线x=;
②抛物线的最大值为;
③∠ACB=90°;
④OP的最小值为.
则正确的结论为( )
A.①②④ B.①② C.①②③ D.①③④
[思路分析]用待定系数法求出函数的解析式即可对①②进行判断;利用勾股定理对③进行判断即可;求出直线AC的解析式,设P(t,﹣t+2),再利用两点间距离公式求出OP的最大值即可.
[答案详解]解:设抛物线的解析式为y=ax2+bx+c,
将B(﹣1,0),A(4,0),C(0,2)代入,
∴,
解得,
∴y=﹣x2+x+2,
∵y=﹣x2+x+2=﹣(x﹣)2+,
∴抛物线的对称轴为直线x=,
故①正确;
当x=时,抛物线有最大值,
故②不正确;
∵B(﹣1,0),A(4,0),C(0,2),
∴AB=5,AC=2,BC=,
∵AC2=AB2+BC2,
∴△ABC是直角三角形,
∴∠ACB=90°,
故③正确;
设直线AC的解析式为y=kx+m,
∴,
解得,
∴y=﹣x+2,
设P(t,﹣t+2),
∴OP=,
∴当t=时,OP有最小值为,
故④正确;
故选:D.
[经验总结]本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,会用待定系数求函数的解析式是解题的关键.
20、一位运动员在离篮筐水平距离4m处起跳投篮,球运行路线可看作抛物线,当球离开运动员的水平距离为1m时,它与篮筐同高,球运行中的最大高度为3.5m,最后准确落入篮筐,已知篮筐到地面的距离为3.05m,该运动员投篮出手点距离地面的高度为( )
A.1.5 m B.2m C.2.25 m D.2.5 m
[思路分析]先建立适当坐标系根据题意可得A,B,C,D坐标,设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.然后把x=﹣2.5代入解析式求y即可.
[答案详解]解:以地面所在的直线为X轴,过抛物线的顶点C垂直于x轴的直线为y轴建立如图所示坐标系:
∵抛物线的顶点坐标为(0,3.5),
∴可设抛物线的函数关系式为y=ax2+3.5.
∵篮球中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,
∴a=﹣,
∴y=﹣x2+3.5.
当x=﹣2.5时,y=﹣×(﹣2.5)2+3.5=﹣1.25+3.5=2.25(m),
该运动员投篮出手点距离地面的高度为2.25m.
故选:C.
[经验总结]本题考查了二次函数的应用,对函数定义、性质,以及在实际问题中的应用等技能进行了全面考查,对学生的数学思维具有很大的挑战性.