1.5 二次函数的应用
— 过关训练 —
一、选择题
1、如图,抛物线y=ax2﹣x+4与直线y=x+b经过点A(2,0),且相交于另一点B;抛物线与y轴交于点C,与x轴交于另一点E;点N在线段AB上,过点N的直线交抛物线于点M,且MN∥y轴,连接AM、BM、BC、AC;当点N在线段AB上移动时(不与A、B重合),下列结论中正确的是( )
A.MN+BN<AB
B.∠BAC=∠BAE
C.∠ACB﹣∠ANM=∠ABC
D.四边形ACBM的最大面积为13
2、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
3、定义:对于已知的两个函数,任取自变量x的一个值,当x≥0时,它们对应的函数值相等;当x<0时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y=x,它的相关函数为.已知点M,N的坐标分别为,,连结MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为( )
A.﹣3≤n≤﹣1或 B.﹣3<n<﹣1或
C.﹣3<n≤﹣1或 D.﹣3≤n≤﹣1或
4、如图,抛物线y=x2﹣x﹣的图象与x轴交于点A,B,与y轴交于点C,顶点为D,以AB为直径在x轴上方画半圆交y轴于点E,圆心为I,P是半圆上一动点,连接DP,点Q为PD的中点.下列四种说法:
①点C在⊙I上;
②IQ⊥PD;
③当点P沿半圆从点B运动至点A时,点Q运动的路径长为π;
④线段BQ的长可以是3.2.
其中正确说法的个数为( )
A.1个 B.2个 C.3个 D.4个
5、约定:若函数图象上至少存在不同的两点关于原点对称,则把该函数称为“黄金函数”,其图象上关于原点对称的两点叫做一对“黄金点”.若点A(1,m),B(n,﹣4)是关于x的“黄金函数”y=ax2+bx+c(a≠0)上的一对“黄金点”,且该函数的对称轴始终位于直线x=2的右侧,有结论①a+c=0;②b=4;③a+b+c<0;④﹣1<a<0.则下列结论正确的是( )
A.①②③ B.①③④ C.①②④ D.②③④
6、抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①2a+b=0;②2c<3b;③当m≠1时,a+b<am2+bm;④当△ABD是等腰直角三角形时,则a=;⑤当△ABC是等腰三角形时,a的值有3个.其中正确的有( )个.
A.5 B.4 C.3 D.2
7、如图,二次函数y=﹣x2+2x+m+1的图象交x轴于点A(a,0)和B(b,0),交y轴于点C,图象的顶点为D.下列四个命题:
①当x>0时,y>0;
②若a=﹣1,则b=4;
③点C关于图象对称轴的对称点为E,点M为x轴上的一个动点,当m=2时,△MCE周长的最小值为2;
④图象上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2,
其中真命题的个数有( )
A.1个 B.2个 C.3个 D.4个
8、在羽毛球比赛中,某次羽毛球的运动路线呈抛物线形,羽毛球距地面的高度y( m)与水平距离x( m)之间的关系如图所示,点B为落地点,且OA=1 m,OB=4 m,羽毛球到达的最高点到y轴的距离为,那么羽毛球到达最高点时离地面的高度为( )
A. B. C. D.
9、据省统计局公布的数据,合肥市2021年一月GDP总值约为6百亿元人民币,若合肥市三月GDP总值为y百亿元人民币,平均每个月GDP增长的百分率为x,则y关于x的函数表达式是( )
A.y=6(1+2x) B.y=6(1﹣x)2
C.y=6(1+x)2 D.y=6+6(1+x)+6(1+x)2
10、五一假期,小明去游乐园游玩,坐上了他向往已久的摩天轮.摩天轮上,小明离地面的高度h(米)和他坐上摩天轮后旋转的时间t(分钟)之间的部分函数关系如图所示,则下列说法错误的是( )
A.摩天轮旋转一周需要6分钟
B.小明出发后的第3分钟和第9分钟,离地面的高度相同
C.小明离地面的最大高度为42米
D.小明出发后经过6分钟,离地面的高度为3米
二、填空题
11、如图,抛物线y=x2+bx+c 与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为 .
(3)点E是第四象限内抛物线上的动点,连接CE和BE,求△BCE面积的最大值及此时点E的坐标;
(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
12、如图,二次函数y=的图象交x轴于点A,B(点A在点B的左侧),交y轴于点C.
(1)若在抛物线对称轴上存在一点P,使△ACP周长最小,则P点坐标为 ;
(2)现有一长为2的线段DE在直线y=上移动,且在移动过程中,线段DE上始终存在点P,使得三条线段PA,PB,PC能与某个等腰三角形的三条边对应相等.若线段DE左端点D的横坐标为t,则t的取值范围是 .
13、如图,在平面直角坐标系中,A(﹣3,0),B(0,1),形状相同的抛物线Cn(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C8的顶点坐标为( ).
14、如图,在平面直角坐标系中,抛物线y=(x+)2﹣4交x轴于A,B两点,交y轴于点C,点D为抛物线顶点.
(1)求tan∠DAC= ;
(2)若点P是线段AC上的一个动点,∠DPQ=∠DAC,DP⊥DQ,当点P在线段AC上运动时,D点不变,Q点随之运动.求当点P从点A运动到点C时,点Q运动的路径长为 .
15、如图,小明抛投一个沙包,沙包被抛出后距离地面的高度h(米)和飞行时间t(秒)近似满足函数关系式h=﹣(t﹣6)2+5,则沙包在飞行过程中距离地面的最大高度是 米.
16、“GGB”是一款数学应用软件,用“GGB”绘制的函数y=﹣x2(x﹣4)和y=﹣x+4的图象如图所示.若x=a,x=b分别为方程﹣x2(x﹣4)=﹣1和﹣x+4=﹣1的一个解,则根据图象可知a b.(填“>”、“=”或“<”).
17、某品牌裙子,平均每天可以售出20条,每条盈利40元,经市场调查发现,如果该品牌每条裙子每降价1元,那么平均每天可以多售出2条,那么当裙子降价 元时,可获得最大利润 元.
18、某抛物线型拱桥的示意图如图,桥长AB=48米,拱桥最高处点C到水面AB的距离为12米,在该抛物线上的点E、F处要安装两盏警示灯(点E、F关于y轴对称),警示灯F距水面AB的高度是9米,则这两盏灯的水平距离EF是 米.
19、某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+10t,无人机着陆后滑行 秒才能停下来.
20、某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为 元时,才能使每天所获销售利润最大.
三、解答题
21、在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.
(1)求抛物线的解析式;
(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;
(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断+是否存在最大值.若存在,求出最大值;若不存在,请说明理由.
22、如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.
(1)求抛物线的解析式;
(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;
(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.
23、如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.
(1)A,B,C三点的坐标为 , , .
(2)连接AP,交线段BC于点D,
①当CP与x轴平行时,求的值;
②当CP与x轴不平行时,求的最大值;
(3)连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m的值,若不存在,请说明理由.
24、如图,在平面直角坐标系中,抛物线y=﹣x2+2mx+9﹣m2与x轴相交于A、B两点(B点在A点的右侧),顶点为C点.
(1)求AB的长;
(2)反比例函数y=(x<0)的图象记作G.
①若点C落在y轴上,抛物线y=﹣x2+2mx+9﹣m2与图象G的交点D在第三象限,D点的横坐标为a,且﹣6<a<﹣4,求k的取值范围.
②已知图象G经过点P(n﹣7,﹣12),点Q(﹣6,4﹣n),若抛物线y=﹣x2+2mx+9﹣m2与线段PQ有唯一的公共点(包括线段PQ的端点),求m的取值范围.
25、如图,有一位同学在兴趣小组实验中,设计了一个模拟滑雪场地截面图,平台AB(水平)与x轴的距离为6,与y轴交于B点,与滑道AM:y=交于A,且AB=2,MN⊥x轴,且MN=1;一号球从点B飞出沿抛物线L:y=﹣x2+bx+6运动,落在滑道AM上一点P,测得P到x轴的距离为3.
(1)k的值为 ,点P的坐标是 ,b= ;
(2)当一号球落到P点后立即弹起,弹起后沿另外一条抛物线G运动,若它的最高点Q的坐标为(8,5).
①求G的解析式,并说明抛物线G与滑道AM是否还能相交;
②在x轴上有线段NC=1,若一号球恰好能被NC接住,则NC向上平移距离d的最大值和最小值各是多少?
(3)一号球从点B飞出同时,二号球从点B的上方点H(0,m)飞出,它所运动的路线与抛物线L的形状相同,且二号球始终在一号球的正上方,当一号球与y轴的距离为3,且二号球位于一号球上方超过5的位置时,直接写出m的取值范围.
26、如图,在平面直角坐标系中,抛物线L:y=ax2+bx+c经过点A(0,﹣),点B(1,),点C(﹣1,﹣),点P(m,n)为抛物线L上任意一点.
(1)求抛物线L的解析式;
(2)当﹣2≤m≤2时,求n的最大值和最小值;
(3)过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合.
①求线段PQ的长;(用含m的代数式表示);
②当PQ≤7时,直接写出线段PQ与抛物线L:y=ax2+bx+c(﹣2≤x<)的图象只有一个交点时m的取值范围.
27、在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),与y轴交于点C,点P为抛物线上一动点.
(1)求抛物线和直线AB的解析式;
(2)如图,点P为第一象限内抛物线上的点,过点P作PD⊥AB,垂足为D,作PE⊥x轴,垂足为E,交AB于点F,设△PDF的面积为S1,△BEF的面积为S2,当=时,求点P坐标;
(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.
28、已知在平面直角坐标系中,抛物线y=a(x+1)(x﹣5)分别与x轴交于A,B两点,且A点在B点的左侧,与y轴交于C点.
(1)AB= ;
(2)当a>0时,设抛物线上一点D(m,n);
①已知﹣2≤m≤3时,﹣18≤n≤14,求C的坐标;
②若∠ADB=90°,直接写出a的取值范围.
(3)作直线y=t(t是常数,且﹣1≤t≤2)交抛物线y=a(x+1)(x﹣5)于P、Q两点,若线段PQ的长不小于3,请求出a的取值范围.
29、在平面直角坐标系xOy中,已知抛物线y=x2+(a﹣1)x﹣2a,其中a为常数,点A(﹣4,2a﹣4)在此抛物线上.
(1)求此时抛物线的解析式及点A的坐标;
(2)设点M(x,y)为抛物线上一点,当﹣3≤x≤2时,求纵坐标y的最大值与最小值的差;
(3)已知点P(﹣2,﹣3),Q(2,﹣3)为平面直角坐标系内两点,连接PQ.若抛物线向上平移c个单位(c>0)的过程中,与线段PQ恰好只有一个公共点,请直接写出c的取值范围.
30、在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.
(1)如图,当m=2时,点P是抛物线CD段上的一个动点.
①求A,B,C,D四点的坐标;
②当△PAB面积最大时,求点P的坐标;
(2)在y轴上有一点M(0,m),当点C在线段MB上时,
①求m的取值范围;
②求线段BC长度的最大值.1.5 二次函数的应用
— 过关训练 —
> > > 精品解析 < < <
一、选择题
1、如图,抛物线y=ax2﹣x+4与直线y=x+b经过点A(2,0),且相交于另一点B;抛物线与y轴交于点C,与x轴交于另一点E;点N在线段AB上,过点N的直线交抛物线于点M,且MN∥y轴,连接AM、BM、BC、AC;当点N在线段AB上移动时(不与A、B重合),下列结论中正确的是( )
A.MN+BN<AB
B.∠BAC=∠BAE
C.∠ACB﹣∠ANM=∠ABC
D.四边形ACBM的最大面积为13
[思路分析](1)当MN过对称轴的直线时,解得:BN=,而MN=,BN+MN=5=AB;
(2)由BC∥x轴(B、C两点y坐标相同)推知∠BAE=∠CBA,而△ABC是等腰三角形,∠CBA≠∠BCA,故∠BAC=∠BAE错误;
(3)如上图,过点A作AD⊥BC、BE⊥AC,由△ABC是等腰三角形得到:EB是∠ABC的平分线,∠ACB﹣∠ANM=∠CAD=ABC;
(4)S四边形ACBM=S△ABC+S△ABM,其最大值为.
[答案详解]解:将点A(2,0)代入抛物线y=ax2﹣x+4与直线y=x+b
解得:a=,b=﹣,
设:M点横坐标为m,则M(m,m2﹣m+4)、N(m,m﹣),
其它点坐标为A(2,0)、B(5,4)、C(0,4),
则AB=BC=5,则∠CAB=∠ACB,
∴△ABC是等腰三角形.
A、当MN过对称轴的直线时,此时点M、N的坐标分别为(,﹣)、(,),
由勾股定理得:BN=,而MN=,
BN+MN=5=AB,
故本选项错误;
B、∵BC∥x轴(B、C两点y坐标相同),
∴∠BAE=∠CBA,而△ABC是等腰三角形不是等边三角形,
∠CBA≠∠BCA,
∴∠BAC=∠BAE不成立,
故本选项错误;
C、如上图,过点A作AD⊥BC、BF⊥AC,
∵△ABC是等腰三角形,
∴BF是∠ABC的平分线,
易证:∠CAD=∠ABF=ABC,
而∠ACB﹣∠ANM=∠CAD=ABC,
故本选项正确;
D、S四边形ACBM=S△ABC+S△ABM,
S△ABC=10,
S△ABM=MN (xB﹣xA)=﹣m2+7m﹣10,其最大值为,
故S四边形ACBM的最大值为10+=12.25,
故本选项错误.
故选:C.
[经验总结]本题考查的是二次函数综合题,涉及到一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,抛物线与x轴的交点,以及等腰三角形、平行线等几何知识,是一道难度较大的题目.
2、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
[思路分析]①正确,根据抛物线的位置判断即可;
②正确,利用对称轴公式,可得b=﹣4a,可得结论;
③错误,应该是x>2时,y随x的增大而增大;
④正确,判断出k>0,可得结论;
⑤正确,设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,可得M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x轴于点K.利用相似三角形的性质,构建方程求出a即可.
[答案详解]解:∵抛物线开口向上,
∴a>0,
∵对称轴是直线x=2,
∴﹣=2,
∴b=﹣4a<0
∵抛物线交y轴的负半轴,
∴c<0,
∴abc>0,故①正确,
∵b=﹣4a,a>0,
∴b+3a=﹣a<0,故②正确,
观察图象可知,当0<x≤2时,y随x的增大而减小,故③错误,
一次函数y=kx+b(k≠0)的图象经过点A,
∵b<0,
∴k>0,此时E(k,b)在第四象限,故④正确.
∵抛物线经过(﹣1,0),(5,0),
∴可以假设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,
∴M(2,﹣9a),C(0,﹣5a),
过点M作MH⊥y轴于点H,设对称轴交x轴于点K.
∵AM⊥CM,
∴∠AMC=∠KMH=90°,
∴∠CMH=∠KMA,
∵∠MHC=∠MKA=90°,
∴△MHC∽△MKA,
∴=,
∴=,
∴a2=,
∵a>0,
∴a=,故⑤正确,
故选:D.
[经验总结]本题考查二次函数的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考选择题中的压轴题.
3、定义:对于已知的两个函数,任取自变量x的一个值,当x≥0时,它们对应的函数值相等;当x<0时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y=x,它的相关函数为.已知点M,N的坐标分别为,,连结MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为( )
A.﹣3≤n≤﹣1或 B.﹣3<n<﹣1或
C.﹣3<n≤﹣1或 D.﹣3≤n≤﹣1或
[思路分析]首先确定出二次函数y=﹣x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值,然后结合函数图象可确定出n的取值范围.
[答案详解]解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点,
∵二次函数y=﹣x2+4x+n的对称轴为x=﹣=2,
∴当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3,
如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰好3个公共点.
∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,
∴﹣n=1,
解得:n=﹣1;
∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点,
如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.
∵抛物线y=﹣x2+4x+n经过点(0,1),
∴n=1,
如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.
∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),
∴+2﹣n=1,解得:n=,
∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.
综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,
故选:C.
[经验总结]本题是二次函数综合题,考查二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=﹣x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值是解题的关键.
4、如图,抛物线y=x2﹣x﹣的图象与x轴交于点A,B,与y轴交于点C,顶点为D,以AB为直径在x轴上方画半圆交y轴于点E,圆心为I,P是半圆上一动点,连接DP,点Q为PD的中点.下列四种说法:
①点C在⊙I上;
②IQ⊥PD;
③当点P沿半圆从点B运动至点A时,点Q运动的路径长为π;
④线段BQ的长可以是3.2.
其中正确说法的个数为( )
A.1个 B.2个 C.3个 D.4个
[思路分析]由抛物线y=x2﹣x﹣得A(﹣1,0),B(3,0),C(0,﹣),可得I(1,0),顶点D(1,﹣2),
①根据勾股定理求出IC,即可求解;
②根据垂径定理即可求解;
③点P的运动轨迹为以I为圆心的半圆,则点Q的运动轨迹为以R为圆心的半圆,即可求解;
④根据勾股定理即可求解.
[答案详解]解:抛物线y=x2﹣x﹣的图象与坐标轴交于点A,B,C,
∴A(﹣1,0),B(3,0),C(0,﹣),
∴点I(1,0),⊙I的半径为2,
∵y=x2﹣x﹣=(x﹣1)2﹣2,
∴顶点D的坐标为:(1,﹣2),
∴ID=2,
∴点D在⊙I上.
①IC===≠2,故点C不在⊙I上,故①不正确;
②∵圆心为I,P是半圆上一动点,点D在⊙I上,点Q为PD的中点.
∴IQ⊥PD,故②正确;
③图中实点G、Q、I、F是点N运动中所处的位置,
则GF是等腰直角三角形的中位线,GF=AB=2,ID交GF于点R,则四边形GDFI为正方形,
当点P在半圆任意位置时,中点为Q,连接IQ,则IQ⊥PD,连接QR,
则QR=ID=IR=RD=RG=RF=GF=1,则点Q的运动轨迹为以R为圆心的半圆,
则Q运动的路径长=×2πr=π,故③正确;
④由③得,当点Q运动到点G的位置时,BQ的长最大,
最大值为=<3.2,
∴线段BQ的长不可以是3.2,故④不正确.
故正确说法有:②③.
故选:B.
[经验总结]本题是二次函数的综合题,主要考查了二次函数的性质,垂径定理,勾股定理,等腰直角三角形的性质,三角形的中位线,点的运动轨迹,点和圆的位置关系等,本题综合性较强,关键在于确定点Q运动的路径,本题综合性强,难度较大.
5、约定:若函数图象上至少存在不同的两点关于原点对称,则把该函数称为“黄金函数”,其图象上关于原点对称的两点叫做一对“黄金点”.若点A(1,m),B(n,﹣4)是关于x的“黄金函数”y=ax2+bx+c(a≠0)上的一对“黄金点”,且该函数的对称轴始终位于直线x=2的右侧,有结论①a+c=0;②b=4;③a+b+c<0;④﹣1<a<0.则下列结论正确的是( )
A.①②③ B.①③④ C.①②④ D.②③④
[思路分析]先根据题意求出m,n的取值,代入y=ax2+bx+c得到a,b,c的关系,再根据对称轴在x=2的右侧即可求解.
[答案详解]解:∵点A(1,m),B(n,﹣4)是关于x的“黄金函数”y=ax2+bx+c(a≠0)上的一对“黄金点”,
∴A,B关于原点对称,
∴m=4,n=﹣1,
∴A(1,4),B(﹣1,﹣4),
代入y=ax2+bx+c(a≠0)
得,
∴,
∴①②正确,
∵该函数的对称轴始终位于直线x=2的右侧,
∴﹣>2,
∴﹣>2,
∴﹣1<a<0,④正确,
∵a+c=0,
∴0<c<1,c=﹣a,
当x=时,y=ax2+bx+c=a+b+c=a+2﹣a=2﹣a,
∵﹣1<a<0,
∴﹣a>0,
∴a+b+c=2﹣a>0,③错误.
综上所述,结论正确的是①②④.
故选:C.
[经验总结]本题属于二次函数综合题,考查了二次函数的性质,待定系数法,“黄金函数”,“黄金点”的定义等知识,解题的关键是理解题意,学会利用参数解决问题,属于中考压轴题.
6、抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①2a+b=0;②2c<3b;③当m≠1时,a+b<am2+bm;④当△ABD是等腰直角三角形时,则a=;⑤当△ABC是等腰三角形时,a的值有3个.其中正确的有( )个.
A.5 B.4 C.3 D.2
[思路分析]根据二次函数图象与系数的关系,二次函数与x轴交于点A(﹣1,0)、B(3,0),可知二次函数的对称轴为直线x==1,即﹣=1,可得2a与b的关系;将A、B两点代入可得c、b的关系;函数开口向上,x=1时取得最小值,则m≠1,可判断③;根据图象AD=BD,顶点坐标,判断④;由图象知BC≠AC,从而可以判断⑤.
[答案详解]解:①∵二次函数与x轴交于点A(﹣1,0)、B(3,0).
∴二次函数的对称轴为直线x==1,即﹣=1,
∴2a+b=0.
故①正确;
②∵二次函数y=ax2+bx+c与x轴交于点A(﹣1,0)、B(3,0).
∴a﹣b+c=0,9a+3b+c=0.
又∵b=﹣2a.
∴3b=﹣6a,a﹣(﹣2a)+c=0.
∴3b=﹣6a,2c=﹣6a.
∴2c=3b.
故②错误;
③∵抛物线开口向上,对称轴是直线x=1.
∴x=1时,二次函数有最小值.
∴m≠1时,a+b+c<am2+bm+c.
即a+b<am2+bm.
故③正确;
④∵AD=BD,AB=4,△ABD是等腰直角三角形.
∴AD2+BD2=42.
解得,AD2=8.
设点D坐标为(1,y).
则[1﹣(﹣1)]2+y2=AD2.
解得y=±2.
∵点D在x轴下方.
∴点D为(1,﹣2).
∵二次函数的顶点D为(1,﹣2),过点A(﹣1,0).
设二次函数解析式为y=a(x﹣1)2﹣2.
∴0=a(﹣1﹣1)2﹣2.
解得a=.
故④正确;
⑤由图象可得,AC≠BC.
故△ABC是等腰三角形时,a的值有2个.(故⑤错误)
故①③④正确,②⑤错误.
故选:C.
[经验总结]主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
7、如图,二次函数y=﹣x2+2x+m+1的图象交x轴于点A(a,0)和B(b,0),交y轴于点C,图象的顶点为D.下列四个命题:
①当x>0时,y>0;
②若a=﹣1,则b=4;
③点C关于图象对称轴的对称点为E,点M为x轴上的一个动点,当m=2时,△MCE周长的最小值为2;
④图象上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2,
其中真命题的个数有( )
A.1个 B.2个 C.3个 D.4个
[思路分析]①错误.由图象可知当a<x<b时,y>0.
②错误.当a=﹣1时,b=3
③错误.△MCE的周长的最小值为2+2.
④正确.设x1关于对称轴的对称点x1′,由题意推出x1<1<x1′<x2,因为函数图象在x>1时,y随x增大而减小,所以y2<y1.
[答案详解]解:①当a<x<b时,y>0.故①错误.
②==1,
∴当a=﹣1时,b=3,故②错误.
③当m=2时,C(0,3),E(2,3).E′与E关于x轴对称,
∴E′(2,﹣3),
∴CE′=2,
∴△MCE的周长的最小值为2+2,故③错误.
④设x1关于对称轴的对称点x1′,
∴x1′=2﹣x1,
∵x1+x2>2,
∴x2>﹣x1+2,
∴x2>x1′,
∵x1<1<x2,
∴x1<1<x1′<x2,
∵函数图象在x>1时,y随x增大而减小,
∴y2<y1,∴④正确.
故选:A.
[经验总结]本题考查二次函数综合题、最小值问题、增减性问题等知识,解题的关键是灵活掌握二次函数的有关性质,第四个结论的判断关键是利用对称点性质解决问题,所以中考压轴题.
8、在羽毛球比赛中,某次羽毛球的运动路线呈抛物线形,羽毛球距地面的高度y( m)与水平距离x( m)之间的关系如图所示,点B为落地点,且OA=1 m,OB=4 m,羽毛球到达的最高点到y轴的距离为,那么羽毛球到达最高点时离地面的高度为( )
A. B. C. D.
[思路分析]由已知得A(0,1),B(4,0),抛物线对称轴为直线x=,用待定系数法得抛物线解析式为y=﹣x2+x+1;令x=得羽毛球到达最高点时离地面的高度为m.
[答案详解]解:由已知得:A(0,1),B(4,0),抛物线对称轴为直线x=,
设抛物线解析式为y=ax2+bx+c,
∴,
解得,
∴抛物线解析式为y=﹣x2+x+1;
令x=得y=﹣×()2+×+1=,
∴羽毛球到达最高点时离地面的高度为m,
故选:D.
[经验总结]本题考查二次函数的应用,解题的关键是读懂题意,用待定系数法求出抛物线的解析式.
9、据省统计局公布的数据,合肥市2021年一月GDP总值约为6百亿元人民币,若合肥市三月GDP总值为y百亿元人民币,平均每个月GDP增长的百分率为x,则y关于x的函数表达式是( )
A.y=6(1+2x) B.y=6(1﹣x)2
C.y=6(1+x)2 D.y=6+6(1+x)+6(1+x)2
[思路分析]根据平均每个月GDP增长的百分率为x,可得二月GDP总值为6(1+x),三月GDP总值为6(1+x)2,即可解答.
[答案详解]解:设平均每个月GDP增长的百分率为x,
由题意可得:
y关于x的函数表达式是:y=6(1+x)2,
故选:C.
[经验总结]本题考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题的关键.
10、五一假期,小明去游乐园游玩,坐上了他向往已久的摩天轮.摩天轮上,小明离地面的高度h(米)和他坐上摩天轮后旋转的时间t(分钟)之间的部分函数关系如图所示,则下列说法错误的是( )
A.摩天轮旋转一周需要6分钟
B.小明出发后的第3分钟和第9分钟,离地面的高度相同
C.小明离地面的最大高度为42米
D.小明出发后经过6分钟,离地面的高度为3米
[思路分析](1)由图象可知,用两个最高点对应的时间作差即可.
(2)根据图象看出第3分钟与第9分钟小明离地面的高度均为45米.
(3)观察图得出,抛物线的顶点对应的高度为45米,与42米不符.
(4)从图上看出,小明出发后经过6分钟恰好到达最低点,最低点为3米,即可当得到结论.
[答案详解]解:由图可知小明第一次到达最高点时间节点为3分钟,第二次到达最高点时间节点为9分钟.9﹣3=6.
∴A选项正确.
由图可知,第3分钟与第9分钟小明离地面的高度均为45米,高度相同.
∴B选项正确.
抛物线的顶点对应的高度为45米.
∴C选项错误,符合题意.
摩天轮旋转一周需要6分钟,摩天轮的最低点为3米,旋转一圈回到最低点.
∴D选项正确.
故选:C.
[经验总结]本题考查了函数的图象,常量和变量,解答问题的关键是明确题意,找出所求问题的条件,利用数形结合思想解答.
二、填空题
11、如图,抛物线y=x2+bx+c 与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为 .
(3)点E是第四象限内抛物线上的动点,连接CE和BE,求△BCE面积的最大值及此时点E的坐标;
(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
[思路分析](1)根据线段OA,OC的长度,判断出A,C的坐标,代入抛物线解析式,求出a,b,c的值,解析式即可求出;
(2)把y=0代入解析式,求出点A,点C的坐标轴,找到对称轴,当点B,D,C在同一直线上时,△ACD的周长最小,列出关系式求解,即可求出点坐标;
(3)过点E作EH⊥x轴于点H,交直线BC与点F,设点E(t,t2﹣t﹣6)(0<1<3),则F(t,2t﹣6),列出△BCE的面积表达式,求最值,即可解决问题;
(4)分两种情况,若AC为菱形的边长或若AC为菱形的对角线来讨论,根据平行关系,求出坐标值.
[答案详解]解:(1)∵OA=2,0C=6,
∴A(﹣2,0),C(0,﹣6),
∵抛物线y=x2+bx+c过点A,C,
∴,
∴,
∴抛物线的解析式为y=x2﹣x﹣6.
(2)如图1所示,
∵当y=0时,x2﹣x﹣6=0,解得x1=﹣2,x2=3,
∴B(3,0),抛物线的对称轴为直线x=,
∵点D在直线x=上,点A,B关于直线x=对称,
∴xD=,AD=BD,
∴当点B,D,C在同一直线上时,△ACD的周长最小,
设直线BC的解析式为y=kx﹣6(k≠0),
∴3k﹣6=0,解得k=2,
∴直线BG:y=2x﹣6,
∴yD=,
∴D(,﹣5).
(3)如图2所示:过点E作EH⊥x轴于点H,交直线BC与点F,
设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6),
∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t,
∴S△BCE=S△BEF+S△CEF
=
=
=,
∴当t=时,△BCE的面积最大,
∴yE=()2﹣﹣6=﹣,
∴当点E的坐标为(,﹣)时,△BCE的面积最大,最大值为.
(4)存在点N,使以点A,C,M,N为顶点的四边形是菱形.
∵A(﹣2,0),C(0,﹣6),
∴AC=,
①若AC为菱形的边长,如图3所示,
则MN∥AC,且MN=AC=,
∴N1(﹣2,),N2(﹣2,﹣),N3(2,0);
②若AC为菱形的对角线,如图4所示,
则AN4∥CM4,AN4=CN4,设N4(﹣2,n),
∴﹣n=,解得n=﹣,
∴N4(﹣2,﹣),
综上所述,点N的坐标为(﹣2,)或(﹣2,﹣)或(2,0)或(﹣2,﹣).
[经验总结]本题考查了二次函数的综合应用,解题关键是找特殊点,充分利用对称轴,顶点坐标等知识.
12、如图,二次函数y=的图象交x轴于点A,B(点A在点B的左侧),交y轴于点C.
(1)若在抛物线对称轴上存在一点P,使△ACP周长最小,则P点坐标为 ;
(2)现有一长为2的线段DE在直线y=上移动,且在移动过程中,线段DE上始终存在点P,使得三条线段PA,PB,PC能与某个等腰三角形的三条边对应相等.若线段DE左端点D的横坐标为t,则t的取值范围是 .
[思路分析](1)先求出点A,点B,点C坐标,当点C,点P,点B三点共线时,△ACP周长最小,由待定系数法可求BC解析式,即可求点P坐标;
(2)分三种情况讨论,由两点间距离公式和三角形三边关系可求解.
[答案详解]解:(1)如图1,连接BP,
∵y=的图象交x轴于点A,B,交y轴于点C.
∴点A(1,0),点B(3,0),点C(0,),对称轴为x=2,
∵点A,点B关于对称轴直线x=2对称,
∴AP=PB,
∵AP+CP+AC=PB+CP+AC,且AC是定值,
∴当点C,点P,点B三点共线时,△ACP周长最小,
设直线BC解析式为:y=kx+b,
解得:
∴直线BC解析式为:y=﹣x+,
当x=2时,y=
∴点P坐标(2,),
故答案为:(2,);
(2)如图2,
∵线段DE上始终存在点P,使得三条线段PA,PB,PC能与某个等腰三角形的三条边对应相等,
∴PA=PB,或PB=PC,或PC=PA,
∵DE在直线y=上移动,
∴点P的纵坐标为,
设点P(x,),
若PA=PC,
∴(x)2+(﹣)2=(x﹣1)2+()2,
∴x=,
∴点P(,),
∴PA=PC=1,PC=,
∵PA+PB<
∴不合题意舍去;
若PB=PC,
∴(x)2+(﹣)2=(x﹣3)2+()2,
∴x=
∴点P(,),
∴PB=PC=,PA=1,
∵PA+PB>PC
∴PA,PB,PC能组成三角形;
若PA=PB,
∴(x﹣1)2+()2=(x﹣3)2+()2,
∴x=2,
∴点P(2,),
∴PA=PB=,PC=,
∵PA+PB>PC,
∴PA,PB,PC能组成三角形;
∵点P在长为2的线段DE上,
∴线段DE左端点D的横坐标为t的取值范围为:﹣2≤t≤2,
∴线段DE左端点D的横坐标为t的取值范围为:﹣≤t≤2,
故答案为:﹣≤t≤2.
[经验总结]本题是二次函数综合题,考查了二次函数的性质,两点距离公式,轴对称的性质,三角形三边关系,利用分类讨论思想解决问题是本题的关键.
13、如图,在平面直角坐标系中,A(﹣3,0),B(0,1),形状相同的抛物线Cn(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C8的顶点坐标为( ).
[思路分析]根据A(﹣3,0),B(0,1)的坐标求直线AB的解析式为y=x+1,根据横坐标的变化规律可知,C8的横坐标为55,代入直线AB的解析式y=x+1中,可求纵坐标.
[答案详解]解:设直线AB的解析式为y=kx+b,(k≠0),
∵A(﹣3,0),B(0,1),
∴,
解得,
∴直线AB的解析式为y=x+1,
∵对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,
观察发现:每个数都是前两个数的和,
∴抛物线C8的顶点坐标的横坐标为55,
∴抛物线C8的顶点坐标为(55,).
[经验总结]此题考查了待定系数法求一次函数的解析式,还考查了点与函数关系式的关系,考查了学生的分析归纳能力.
14、如图,在平面直角坐标系中,抛物线y=(x+)2﹣4交x轴于A,B两点,交y轴于点C,点D为抛物线顶点.
(1)求tan∠DAC= ;
(2)若点P是线段AC上的一个动点,∠DPQ=∠DAC,DP⊥DQ,当点P在线段AC上运动时,D点不变,Q点随之运动.求当点P从点A运动到点C时,点Q运动的路径长为 .
[思路分析](1)根据函数解析式可求A、B、C、D坐标,从而得到∠ACD=90°,即为所求;
(2)点Q随P运动而运动,P为主动点,Q为从动点,D为定点,故等于P的路径(AC)与Q的路径之比,算出和AC即可得到Q的路径.
[答案详解]
解:(1)如上图,过D作DE⊥y轴于E,
∵抛物线y=(x+)2﹣4交x轴于A,B两点,交y轴于点C,点D为抛物线顶点,
∴D(﹣,﹣4),DE=,OE=4,
令y=0得(x+)2﹣4=0,解得x1=﹣3,x2=,
∴A(﹣3,0),B(,0),OA=3
令x=0得y=﹣3,
∴C(0,﹣3),OC=3,
∴CE=OE﹣OC=,
∴OA=OC=3,CE=DE=,
∴△AOC和△CED是等腰直角三角形,AC=3,DC=,
∴∠ACO=∠DEC=45°,
∴∠DCA=90°,
∴tan∠DAC===,
故答案为:;
(2)∵∠DPQ=∠DAC,DP⊥DQ,且∠DCA=90°,
∴△ADC∽△PQD,
∴,
∵点P在线段AC上运动时,D点不变,Q点随之运动,
∴P的路径(AC)与Q的路径之比等于,
∵AC=3,
∴Q的路径为3×=,
故答案为:.
[经验总结]本题考查二次函数、三角函数、相似三角形等知识,题目较综合,解决本题的关键是需要掌握P点运动路径与Q点运动路径的关系.
15、如图,小明抛投一个沙包,沙包被抛出后距离地面的高度h(米)和飞行时间t(秒)近似满足函数关系式h=﹣(t﹣6)2+5,则沙包在飞行过程中距离地面的最大高度是 米.
[思路分析]开口向下的抛物线的兜兜转转即为沙包在飞行过程中距离地面的最大高度,根据二次函数的性质即可得出答案.
[答案详解]解:∵h=﹣(t﹣6)2+5为开口向下的抛物线,
∴当t=6时,h最大=5.
故答案为:5.
[经验总结]本题考查了二次函数在实际问题中的应用,熟练掌握二次函数的性质是解题的关键.
16、“GGB”是一款数学应用软件,用“GGB”绘制的函数y=﹣x2(x﹣4)和y=﹣x+4的图象如图所示.若x=a,x=b分别为方程﹣x2(x﹣4)=﹣1和﹣x+4=﹣1的一个解,则根据图象可知a b.(填“>”、“=”或“<”).
[思路分析]根据方程的解是函数图象交点的横坐标,结合图象得出结论.
[答案详解]解:∵方程﹣x2(x﹣4)=﹣1的解为函数图象与直线y=﹣1的交点的横坐标,
﹣x+4=﹣1的一个解为一次函数y=﹣x+4与直线y=﹣1交点的横坐标,
如图所示:
由图象可知:a<b.
故答案为:<.
[经验总结]本题考查了函数图象与方程的解之间的关系,关键是利用数形结合,把方程的解转化为函数图象之间的关系.
17、某品牌裙子,平均每天可以售出20条,每条盈利40元,经市场调查发现,如果该品牌每条裙子每降价1元,那么平均每天可以多售出2条,那么当裙子降价 元时,可获得最大利润 元.
[思路分析]设每件裙子应降价x元,则每件盈利(40﹣x)元,平均每天的销售量为(20+2x)件,根据总利润=每件盈利×平均每天的销售量,即可得出关于x的二次函数关系式,再根据二次函数的性质可得答案.
[答案详解]解:设每件裙子应降价x元,则每件盈利(40﹣x)元,平均每天的销售量为(20+2x)件,
依题意得利润w=(40﹣x)(20+2x)=﹣2x2+60x+800=﹣2(x﹣15)2+1250.
所以当裙子降价15元时,可以获得最大利润为1250元,
故答案为:15,1250.
[经验总结]本题考查二次函数的应用,根据题意列出二次函数关系式是解题关键.
18、某抛物线型拱桥的示意图如图,桥长AB=48米,拱桥最高处点C到水面AB的距离为12米,在该抛物线上的点E、F处要安装两盏警示灯(点E、F关于y轴对称),警示灯F距水面AB的高度是9米,则这两盏灯的水平距离EF是 米.
[思路分析]根据题意,可以设抛物线的解析式为y=ax2+12,然后根据题意可以得到点A的坐标,然后代入抛物线解析式,即可得到抛物线解析式,再将y=9代入,即可得到相应的x的值,然后即可求得这两盏灯的水平距离EF的长.
[答案详解]解:设该抛物线的解析式为y=ax2+12,
由题意可得,点A的坐标为(﹣24,0),
∴0=a×(﹣24)2+12,
解得a=﹣,
∴y=﹣x2+12,
当y=9时,
9=﹣x2+12,
解得x1=12,x2=﹣12,
∴点E(﹣12,9),点F(12,9),
∴这两盏灯的水平距离EF是12﹣(﹣12)=12+12=24(米),
故答案为:24.
[经验总结]本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想解答.
19、某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+10t,无人机着陆后滑行 秒才能停下来.
[思路分析]飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.
[答案详解]解:由题意得,
S=﹣0.25t2+10t
=﹣0.25(t2﹣40t+400﹣400)
=﹣0.25(t﹣20)2+100,
∵﹣0.25<0,
∴t=20时,飞机滑行的距离最大,
即当t=20秒时,飞机才能停下来.
故答案为:20.
[经验总结]本题考查了二次函数的应用,能熟练的应用配方法得到顶点式是解题关键.
20、某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为 元时,才能使每天所获销售利润最大.
[思路分析]根据题意列出二次函数关系式,根据二次函数的性质即可得到结论.
[答案详解]解:设销售单价定为x元(x≥9),每天所获利润为y元,
则y=[20﹣4(x﹣9)] (x﹣8)
=﹣4x2+88x﹣448
=﹣4(x﹣11)2+36,
所以将销售定价定为11元时,才能使每天所获销售利润最大,
故答案为11.
[经验总结]本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.
三、解答题
21、在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.
(1)求抛物线的解析式;
(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;
(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断+是否存在最大值.若存在,求出最大值;若不存在,请说明理由.
[思路分析](1)将点A,B的坐标代入二次函数的解析式,利用待定系数法求解即可;
(2)利用待定系数法求出直线AB的解析式,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,可分别表达△OAB和△PAB的面积,根据题意列出方程求出PN的长,设出点P的坐标,表达PN的长,求出点P的坐标即可;
(3)由PD∥OB,可得△DPC∽△BOC,所以CP:CO=CD:CB=PD:OB,所以=,=,则+=.设直线AB交y轴于点F.则F(0,),过点P作PH⊥x轴,垂足为H,PH交AB于点G,易证PDG∽△OBF,所以PD:OB=PG:OF,设P(n,﹣n2+n)(1<n<4),由(2)可知,PG=﹣n2+n﹣,所以+===PG=﹣(n﹣)2+.利用二次函数的性质可得出最值.
[答案详解]解:(1)将A(4,0),B(1,4)代入y=ax2+bx,
∴,解得.
∴抛物线的解析式为:y=﹣x2+x.
(2)设直线AB的解析式为:y=kx+t,
将A(4,0),B(1,4)代入y=kx+t,
∴,
解得.
∵A(4,0),B(1,4),
∴S△OAB=×4×4=8,
∴S△OAB=2S△PAB=8,即S△PAB=4,
过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,
∴S△PAB=S△PNB+S△PNA=PN×BE+PN×AM=PN=4,
∴PN=.
设点P的横坐标为m,
∴P(m,﹣m2+m)(1<m<4),N(m,﹣m+),
∴PN=﹣m2+m﹣(﹣m+)=.
解得m=2或m=3;
∴P(2,)或(3,4).
(3)∵PD∥OB,
∴∠DPC=∠BOC,∠PDC=∠OBC,
∴△DPC∽△BOC,
∴CP:CO=CD:CB=PD:OB,
∵=,=,
∴+=.
设直线AB交y轴于点F.则F(0,),
过点P作PH⊥x轴,垂足为H,PH交AB于点G,如图,
∵∠PDC=∠OBC,
∴∠PDG=∠OBF,
∵PG∥OF,
∴∠PGD=∠OFB,
∴△PDG∽△OBF,
∴PD:OB=PG:OF,
设P(n,﹣n2+n)(1<n<4),
由(2)可知,PG=﹣n2+n﹣,
∴+===PG=﹣(n﹣)2+.
∵1<n<4,
∴当n=时,+的最大值为.
[经验总结]本题考查一次函数和二次函数的图象与性质、三角函数、三角形面积、相似三角形的判定与性质等基础知识,考查数形结合、函数与方程,函数建模等数学思想方法,考查运算能力、推理能力、空间观念与几何直观、创新意识等数学素养.
22、如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.
(1)求抛物线的解析式;
(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;
(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.
[思路分析](1)根据抛物线的对称轴为直线x=2,可得出抛物线与x轴的另一个交点的坐标为(﹣2,0),列出交点式,再将点A(0,﹣4)可得出抛物线的解析式;
(2)根据可得出△ABD是等腰直角三角形,再根据点E的运动和正方形的性质可得出点H,F,G的坐标,根据点B,C的坐标可得出直线BC的解析式,将点G代入直线BC的解析式即可;
(3)若存在,则△BGC是直角三角形,则需要分类讨论,当点B为直角顶点,当点G为直角顶点,当点C为直角顶点,分别求解即可.
[答案详解]解:(1)∵抛物线的对称轴为直线x=2,D点的坐标为(4,0),
∴抛物线与x轴的另一个交点为(﹣2,0),
∴抛物线的解析式为:y=a(x+2)(x﹣6),
将点A(0,﹣4)解析式可得,﹣12a=﹣4,
∴a=.
∴抛物线的解析式为:y=(x+2)(x﹣6)=x2﹣x﹣4.
(2)∵AB⊥y轴,A(0,﹣4),
∴点B的坐标为(4,﹣4).
∵D(4,0),
∴AB=BD=4,且∠ABD=90°,
∴△ABD是等腰直角三角形,∠BAD=45°.
∵EF⊥AB,
∴∠AFE=90°,
∴△AEF是等腰直角三角形.
∵AE=m,
∴AF=EF=m,
∴E(m,﹣4+m),F(m,﹣4).
∵四边形EGFH是正方形,
∴△EHF是等腰直角三角形,
∴∠HEF=∠HFE=45°,
∴FH是∠AFE的角平分线,点H是AE的中点.
∴H(m,﹣4+m),G(m,﹣4+m).
∵B(4,﹣4),C(6,0),
∴直线BC的解析式为:y=2x﹣12.
当点G随着E点运动到达BC上时,有2×m﹣12=﹣4+m.
解得m=.
∴G(,﹣).
(3)存在,理由如下:
∵B(4,﹣4),C(6,0),G(m,﹣4+m).
∴BG2=(4﹣m)2+(m)2,
BC2=(4﹣6)2+(﹣4)2=20,
CG2=(6﹣m)2+(﹣4+m)2.
若以B,G,C和平面内的另一点为顶点的四边形是矩形,则△BGC是直角三角形,
∴分以下三种情况:
①当点B为直角顶点时,BG2+BC2=CG2,
∴(4﹣m)2+(m)2+20=(6﹣m)2+(﹣4+m)2,
解得m=,
∴G(,﹣);
②当点C为直角顶点时,BC2+CG2=BG2,
∴20+(6﹣m)2+(﹣4+m)2=(4﹣m)2+(m)2,
解得m=,
∴G(,﹣);
③当点G为直角顶点时,BG2+CG2=BC2,
∴(4﹣m)2+(m)2+(6﹣m)2+(﹣4+m)2=20,
解得m=或2,
∴G(3,﹣3)或(,﹣);
综上,存在以B,G,C和平面内的另一点为顶点的四边形是矩形,点G的坐标为(,﹣)或(,﹣)或(3,﹣3)或(,﹣).
[经验总结]本题属于二次函数综合题,主要考查待定系数法求函数解析式,正方形的性质与判定,矩形的性质与判定,等腰直角三角形的性质与判定,分类讨论等知识,解题关键是由点E的坐标得出点H,F,G的坐标.本题第(3)问当点B和点C为直角顶点时,也可通过一次函数和几何结合求解.
23、如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.
(1)A,B,C三点的坐标为 , , .
(2)连接AP,交线段BC于点D,
①当CP与x轴平行时,求的值;
②当CP与x轴不平行时,求的最大值;
(3)连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m的值,若不存在,请说明理由.
[思路分析](1)令x=0,则y=4,令y=0,则﹣x2+x+4=0,所以x=﹣2或x=3,由此可得结论;
(2)①由题意可知,P(1,4),所以CP=1,AB=5,由平行线分线段成比例可知,==.
②过点P作PQ∥AB交BC于点Q,所以直线BC的解析式为:y=﹣x+4.设点P的横坐标为m,则P(m,﹣m2+m+4),Q(m2﹣m,﹣m2+m+4).所以PQ=m﹣(m2﹣m)=﹣m2+m,因为PQ∥AB,所以===﹣(m﹣)2+,由二次函数的性质可得结论;
(3)假设存在点P使得∠BCO+2∠BCP=90°,即0<m<3.过点C作CF∥x轴交抛物线于点F,由∠BCO+2∠PCB=90°,可知CP平分∠BCF,延长CP交x轴于点M,易证△CBM为等腰三角形,所以M(8,0),所以直线CM的解析式为:y=﹣x+4,令﹣x2+x+4=﹣x+4,可得结论.
[答案详解]解:(1)令x=0,则y=4,
∴C(0,4);
令y=0,则﹣x2+x+4=0,
∴x=﹣2或x=3,
∴A(﹣2,0),B(3,0).
故答案为:(﹣2,0);(3,0);(0,4).
(2)①∵CP∥x轴,C(0,4),
∴P(1,4),
∴CP=1,AB=5,
∵CP∥x轴,
∴==.
②如图,过点P作PQ∥AB交BC于点Q,
∴直线BC的解析式为:y=﹣x+4.
设点P的横坐标为m,
则P(m,﹣m2+m+4),Q(m2﹣m,﹣m2+m+4).
∴PQ=m﹣(m2﹣m)=﹣m2+m,
∵PQ∥AB,
∴===﹣(m﹣)2+,
∴当m=时,的最大值为.
另解:分别过点P,A作y轴的平行线,交直线BC于两点,仿照以上解法即可求解.
(3)假设存在点P使得∠BCO+2∠BCP=90°,即0<m<3.
过点C作CF∥x轴交抛物线于点F,
∵∠BCO+2∠PCB=90°,∠BCO+∠BCF+∠MCF=90°,
∴∠MCF=∠BCP,
延长CP交x轴于点M,
∵CF∥x轴,
∴∠PCF=∠BMC,
∴∠BCP=∠BMC,
∴△CBM为等腰三角形,
∵BC=5,
∴BM=5,OM=8,
∴M(8,0),
∴直线CM的解析式为:y=﹣x+4,
令﹣x2+x+4=﹣x+4,
解得x=或x=0(舍),
∴存在点P满足题意,此时m=.
[经验总结]此题是二次函数综合题,主要考查了待定系数法,平行线分线段成比例,角度的存在性等相关内容,解本题的关键是求抛物线解析式,确定点P的坐标.
24、如图,在平面直角坐标系中,抛物线y=﹣x2+2mx+9﹣m2与x轴相交于A、B两点(B点在A点的右侧),顶点为C点.
(1)求AB的长;
(2)反比例函数y=(x<0)的图象记作G.
①若点C落在y轴上,抛物线y=﹣x2+2mx+9﹣m2与图象G的交点D在第三象限,D点的横坐标为a,且﹣6<a<﹣4,求k的取值范围.
②已知图象G经过点P(n﹣7,﹣12),点Q(﹣6,4﹣n),若抛物线y=﹣x2+2mx+9﹣m2与线段PQ有唯一的公共点(包括线段PQ的端点),求m的取值范围.
[思路分析](1)令y=0,则﹣x2+2mx+9﹣m2=0,利用根与系数的关系求AB=|x1﹣x2|的值即可;
(2)①求出m=0,联立方程组,可得=﹣a2+9,再由a的范围求k的范围即可;
②求出P(﹣1,﹣12),Q(﹣6,﹣2),再结合图象求解即可.
[答案详解]解:(1)令y=0,则﹣x2+2mx+9﹣m2=0,
∴x1+x2=2m,x1 x2=m2﹣9,
∴AB=|x1﹣x2|==6;
(2)①∵点C落在y轴上,
∴m=0,
∴y=﹣x2+9,
联立方程组,
∴=﹣x2+9,
∵D点的横坐标为a
∴=﹣a2+9,
∵﹣6<a<﹣4,
当a=﹣6时,k=162,
当a=﹣4时,k=28,
∴28<k<162;
②∵图象G经过点P(n﹣7,﹣12),点Q(﹣6,4﹣n),
∴12(n﹣7)=﹣6(4﹣n),
解得n=6,
∴P(﹣1,﹣12),Q(﹣6,﹣2),
∵y=﹣x2+2mx+9﹣m2=﹣(x﹣m)2+9,
∴D(m,9),
当抛物线经过P(﹣1,﹣12)时,m=﹣1,
当抛物线经过Q(﹣6,﹣2)时,m=﹣6±,
如图1,当﹣6+≤m≤﹣1+时,抛物线与线段PQ有唯一的公共点;
如图2,当﹣6﹣≤m≤﹣1﹣时,抛物线与线段PQ有唯一的公共点;
综上所述:﹣6+≤m≤﹣1+或﹣6﹣≤m≤﹣1﹣时,抛物线与线段PQ有唯一的公共点.
[经验总结]本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,反比例函数的图象及性质,数形结合讨论是解题的关键.
25、如图,有一位同学在兴趣小组实验中,设计了一个模拟滑雪场地截面图,平台AB(水平)与x轴的距离为6,与y轴交于B点,与滑道AM:y=交于A,且AB=2,MN⊥x轴,且MN=1;一号球从点B飞出沿抛物线L:y=﹣x2+bx+6运动,落在滑道AM上一点P,测得P到x轴的距离为3.
(1)k的值为 ,点P的坐标是 ,b= ;
(2)当一号球落到P点后立即弹起,弹起后沿另外一条抛物线G运动,若它的最高点Q的坐标为(8,5).
①求G的解析式,并说明抛物线G与滑道AM是否还能相交;
②在x轴上有线段NC=1,若一号球恰好能被NC接住,则NC向上平移距离d的最大值和最小值各是多少?
(3)一号球从点B飞出同时,二号球从点B的上方点H(0,m)飞出,它所运动的路线与抛物线L的形状相同,且二号球始终在一号球的正上方,当一号球与y轴的距离为3,且二号球位于一号球上方超过5的位置时,直接写出m的取值范围.
[思路分析](1)利用已知条件得到点A的坐标,利用待定系数法即可得出结论;
(2)①利用待定系数法求得抛物线G的解析式,通过计算说明当x=12时抛物线G上对应的点在点M的上方即可;
②分别计算当x=12和当x=13时抛物线G上对应的点的坐标即可得出结论;
(3)设出二号球运动的路线的抛物线解析式为y==﹣x2+x+m,利用已知条件列出不等式即可求得结论.
[答案详解]解:(1)∵平台AB(水平)与x轴的距离为6,AB=2,
∴A(2,6).
∴6=.
∴k=12.
∴y=.
当y=3时,
x==4.
∴P(4,3).
将P(4,3)代入y=﹣x2+bx+6得:
﹣16+4b+6=3.
解得:b=.
故答案为:12;(4,3);;
(2)①抛物线G与滑道AM不能再相交.理由:
设抛物线G的解析式为y=a(x﹣8)2+5,
∵点P(4,3)在抛物线G上,
∴a(4﹣8)2+5=3.
解得:a=﹣.
∴抛物线G的解析式为y=﹣+5=+2x﹣3.
∵MN=1,
∴当y=1时,1=.
∴x=12.
∴M(12,1),N(12,0).
∵当x=12时,y=﹣×144+2×12﹣3=3>1,
∴抛物线G与滑道AM之间除点P外再无交点.
∴抛物线G与滑道AM不能再相交.
②∵NC=1,
∴C(13,0).
当x=13时,y=﹣+2×13﹣3=.
若一号球恰好能被点N接住,
∵抛物线G上有点(12,3),
∴则NC向上平移距离d=3;
若一号球恰好能被点C接住,
∵抛物线G上有点(13,),
∴则NC向上平移距离d=;
∴NC向上平移距离d的最大值为3,最小值为;
(3)∵二号球从点B的上方点H(0,m)飞出,它所运动的路线与抛物线L的形状相同,
∴二号球运动的路线的抛物线解析式为y==﹣x2+x+m.
∵一号球与y轴的距离为3,
∴一号球经过点(3,).
∵当一号球与y轴的距离为3,且二号球位于一号球上方超过5的位置,
∴﹣32+3×+m﹣>5.
∴m>11.
[经验总结]本题主要考查了待定系数法确定函数的解析式,二次函数图象的性质,二次函数图象上点的坐标的特征,反比例函数的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.
26、如图,在平面直角坐标系中,抛物线L:y=ax2+bx+c经过点A(0,﹣),点B(1,),点C(﹣1,﹣),点P(m,n)为抛物线L上任意一点.
(1)求抛物线L的解析式;
(2)当﹣2≤m≤2时,求n的最大值和最小值;
(3)过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合.
①求线段PQ的长;(用含m的代数式表示);
②当PQ≤7时,直接写出线段PQ与抛物线L:y=ax2+bx+c(﹣2≤x<)的图象只有一个交点时m的取值范围.
[思路分析](1)利用待定系数法求解.
(2)将函数代数式配方,由抛物线开口方向和对称轴直线方程求解.
(3)①点Q的横坐标与点P横坐标作差,即可.
②通过数形结合求出m取值范围.
[答案详解]解:(1)将A(0,﹣),点B(1,),点C(﹣1,﹣),代入y=ax2+bx+c得:
,
解得,,
∴y=x2+x﹣.
(2)∵y=x2+x﹣=(x+)2﹣2,
∵抛物线开口向上,对称轴为直线x=﹣.
∴当x=﹣时,n的最小值为﹣2,
∵2﹣(﹣)>﹣﹣(﹣2),
∴当x=2时,n取最大值22+2﹣=.
(3)①PQ=|﹣2m+1﹣m|=|﹣3m+1|,
当﹣3m+1>0时,即m<时,PQ=﹣3m+1,
当﹣3m+1<0时,即m>时,PQ=3m﹣1.
②当m>时,与抛物线L:y=ax2+bx+c(﹣2≤x<)的图象不会有交点.
∴讨论m<时,
∵0<PQ≤7,
∴0<﹣3m+1≤7,
解得﹣2≤m<.
如图,当x=﹣时,点P在最低点,PQ与图象有1交点,
m增大过程中,﹣<m<,点P与点Q在对称轴右侧,PQ与图象只有1个交点,
直线x=关于抛物线对称轴直线x=﹣对称后直线为x=﹣,
∴﹣<m<﹣时,PQ与图象有2个交点.
当﹣2≤m≤﹣时,PQ与图象有1个交点,
综上所述,﹣2≤m≤﹣或﹣≤m<时,PQ与图象交点个数为1.
[经验总结]本题考查二次函数的综合应用,解题关键是熟练掌握二次函数的性质,将函数解析式配方,通过数形结合的方法求解.
27、在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),与y轴交于点C,点P为抛物线上一动点.
(1)求抛物线和直线AB的解析式;
(2)如图,点P为第一象限内抛物线上的点,过点P作PD⊥AB,垂足为D,作PE⊥x轴,垂足为E,交AB于点F,设△PDF的面积为S1,△BEF的面积为S2,当=时,求点P坐标;
(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.
[思路分析](1)将A,B的坐标分别代入抛物线和直线AB的解析式,组成方程组,解之即可;
(2)如图,设直线AB与y轴交于点G,易证△PDF∽△BOG,所以PD:DF:PF=OB:OG:AB=3:4:5,所以PD=PF,DF=PF,则S1= PD DF=PF2,设点P的横坐标为m,则P(m,﹣m2+m+4)(0<m<4),所以F(m,﹣m+3),E(m,0),则PF=﹣m2+m+4﹣(﹣m+3)=﹣m2+m+1,BE=4﹣m,FE=﹣m+3,由三角形的面积分别表达S1和S2,利用给出比例建立方程即可;
(3)当点P在直线AB上方时,过点P作x轴的平行线PH,过点B作x轴的平行线交PH于点H,可证明△PHB≌△NKB(AAS),进而可得点P的纵坐标为3,代入即可得出PH的长,即可得出点N的坐标;当点P在直线AB下方时,如图所示,过点N作x轴的平行线NM,过点B作x轴的垂线BM交NM于点M,过点P作PQ⊥x轴于点Q.同理可得∴△PQB≌△NMB(AAS),求出NM的长和BQ的长,进而可得出点N的坐标.
[答案详解]解:(1)∵抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),
∴,
解得,
∴抛物线的解析式为:y=﹣x2+x+4;
设直线AB的解析式为:y=kx+b′,
∴,
解得.
∴直线AB的解析式为:y=﹣x+3.
(2)如图,设直线AB与y轴交于点G,
∴G(0,3),
∴OG=3,OB=4,AB=5,
∵PD⊥AB,PE⊥OB,
∴∠PDF=∠BEF=∠GOB=90°,
∵∠P+∠PFD=∠BFE+∠OBE=90°,∠PFE=∠BFE,
∴∠P=∠OBE,
∴△PDF∽△BOG,
∴PD:DF:PF=OB:OG:AB=4:3:5,
∴PD=PF,DF=PF,
∴S1= PD DF=PF2,
设点P的横坐标为m,则P(m,﹣m2+m+4)(0<m<4),
∴F(m,﹣m+3),E(m,0),
∴PF=﹣m2+m+4﹣(﹣m+3)=﹣m2+m+1,BE=4﹣m,FE=﹣m+3,
∴S1=(﹣m2+m+1)2=(m﹣4)2(2m+1)2,
S2= BE EF=(4﹣m)(﹣m+3)=(m﹣4)2,
∵=,
∴[(m﹣4)2(2m+1)2]:[(m﹣4)2]=,解得m=3或m=﹣4(舍),
∴P(3,).
(3)存在,点N的坐标为(1,3﹣)或(1,3+).理由如下:
法一:由抛物线的解析式可知,C(0,4),
∴OB=OC=4,
∴∠OBC=∠OCB=45°.
如图,当点P在直线AB上方时,如图所示,过点P作x轴的平行线PH,过点B作x轴的垂线交PH于点H,
∵BC垂直平分PN,
∴BN=BP,∠PBC=∠NBC,
∵∠OBC=∠CBH=45°,
∴∠PBH=∠OBN,
∵∠H=∠BKN=90°,
∴△PHB≌△NKB(AAS),
∴HB=BK,PH=NK,
∵抛物线的对称轴为x=1,
∴BK=3,
∴BH=3,
令﹣x2+x+4=3,
解得x=1+或x=1﹣(舍),
∴PH=4﹣(1+)=3﹣,
∴NK=3﹣,
∴N(1,3﹣);
当点P在直线AB下方时,如图所示,过点N作x轴的平行线NM,过点B作x轴的垂线BM交NM于点M,过点P作PQ⊥x轴于点Q.
∵BC垂直平分PN,
∴BN=BP,∠PBC=∠NBC,
∵∠OBC=∠CBM=45°,
∴∠PBQ=∠MBN,
∵∠M=∠PQB=90°,
∴△PQB≌△NMB(AAS),
∴QB=MB,PQ=NM,
∵抛物线的对称轴为x=1,
∴MN=3,
∴PQ=3,
令﹣x2+x+4=3,
解得x=1+(舍)或x=1﹣,
∴BQ=4﹣(1﹣)=3+,
∴BM=3+,
∴N(1,3+).
综上,存在,点N的坐标为(1,3﹣)或(1,3+).
法二:设BC与对称轴交于E,
可得E(1.3)
过E做x轴平行线交抛物线于P1P2,
∴直线P1P2和直线DE关于直线BC对称
令﹣x2+x+4=3,
解得x=1+或x=1﹣,
此即线P1和P2的横坐标,
∴P1E=P2E=,
∴EN1=EN2=,
∴点N的坐标为(1,3﹣)或(1,3+).
[经验总结]本题属于二次函数综合题,涉及待定系数法求函数解析式,相似三角形的性质与判定,三角形的面积,全等三角形的性质与判定等知识,第(3)问解题关键是将垂直平分的条件转化为三角形的全等,得出线段之间的关系.
28、已知在平面直角坐标系中,抛物线y=a(x+1)(x﹣5)分别与x轴交于A,B两点,且A点在B点的左侧,与y轴交于C点.
(1)AB= ;
(2)当a>0时,设抛物线上一点D(m,n);
①已知﹣2≤m≤3时,﹣18≤n≤14,求C的坐标;
②若∠ADB=90°,直接写出a的取值范围.
(3)作直线y=t(t是常数,且﹣1≤t≤2)交抛物线y=a(x+1)(x﹣5)于P、Q两点,若线段PQ的长不小于3,请求出a的取值范围.
[思路分析](1)由函数解析式可求出点A和点B的坐标,由两点间距离公式可求出AB的长;
(2)①由对称轴公式可求出对称轴为直线x=2,则当﹣2≤m≤3时,则当x=2时,y有最小值﹣9a=﹣18,当m=﹣2时,n有最大值14,由此可求出a的值;
②由①知P(2,﹣9a),以AB为直径作⊙E,当∠ADB=90°,抛物线与⊙E相交于D,此时P点在圆E上或圆E外,9a≥3,解得;
(3)因为PQ的长不小于3,所以点P和点Q到对称轴x=2的距离不小于,则靠近y轴的点的横坐标为,需要分a>0和a<0两种情况.
[答案详解]解:(1)∵抛物线y=a(x+1)(x﹣5)分别与x轴交于A,B两点,
∴A(﹣1,0),B(5,0),
∴AB=6;
故答案为:6.
(2)①y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a=a(x﹣2)2﹣9a,
∵a>0,抛物线的对称轴为直线x=2,
∴当x=2时,y有最小值﹣9a,
∵当﹣2≤m≤3时,﹣18≤n≤14,
∴当m=2时,n有最小值﹣18;当m=﹣2时,n有最大值14,
即﹣9a=﹣18,解得a=2,此时点(﹣2,14)在抛物线y=2(x﹣2)2﹣18上,
∴抛物线的解析式为y=2x2﹣8x﹣10,
∴C(0,﹣10).
②设抛物线的顶点为P,
∴P(2,﹣9a),
以AB为直径作⊙E,当∠ADB=90°,抛物线与⊙E相交于D,此时P点在圆E上或圆E外,
∴9a≥3,解得.
(3)∵PQ的长不小于3,
∴点P和点Q到对称轴x=2的距离不小于,
∴当a>0时,,解之得,,
当a<0时,,解之得,.
[经验总结]本题查了二次函数综合题,涉及抛物线与x轴的交点问题,二次函数的最值问题,角度的存在性等知识,综合性较强,解题关键是熟练掌握一次函数与二次函数的交点的求法并能灵活运用二次函数的对称性.
29、在平面直角坐标系xOy中,已知抛物线y=x2+(a﹣1)x﹣2a,其中a为常数,点A(﹣4,2a﹣4)在此抛物线上.
(1)求此时抛物线的解析式及点A的坐标;
(2)设点M(x,y)为抛物线上一点,当﹣3≤x≤2时,求纵坐标y的最大值与最小值的差;
(3)已知点P(﹣2,﹣3),Q(2,﹣3)为平面直角坐标系内两点,连接PQ.若抛物线向上平移c个单位(c>0)的过程中,与线段PQ恰好只有一个公共点,请直接写出c的取值范围.
[思路分析](1)将点坐标代入解析式求解得出a的值即可.
(2)根据抛物线开口方向及对称轴方程可得x=﹣1时y取最小值,x=2时y取最大值,进而求解.
(3)分类讨论抛物线顶点落在PQ上,点P和点Q落在抛物线上的临界值,通过数形结合求解.
[答案详解]解:(1)把点A(﹣4,2a﹣4)代入抛物线解析式y=x2+(a﹣1)x﹣2a,
得2a﹣4=(﹣4)2﹣4(a﹣1)﹣2a.
解得a=3.
∴抛物线的解析式为y=x2+2x﹣6.点A的坐标为(﹣4,2).
(2)∵抛物线的对称轴为直线,且﹣3≤x≤2.
∴当x=﹣1时,y最小=﹣7.
∵当x=﹣3时,y=﹣3;当x=2时,y=2,
∴y最大=2.
∴点M纵坐标y的最大值与最小值的差为:y最大﹣y最小=2﹣(﹣7)=9.
(3)由题意可知,PQ∥x轴.
抛物线开口向上,对称轴为直线x=﹣1,抛物线顶点坐标为(﹣1,c﹣7),
当抛物线顶点落在PQ上时,c﹣7=﹣3,
解得c=4,满足题意.
把Q(2,﹣3)代入y=x2+2x﹣6+c得﹣3=4+4﹣6+c,
解得c=﹣5,
把P(﹣2,﹣3)代入y=x2+2x﹣6+c得﹣3=4﹣4﹣6+c,
解得c=3,
∴0<c<3满足题意,
综上所述,0<c<3或c=4.
[经验总结]本题考查二次函数的性质,解题关键是掌握待定系数法求函数解析式,掌握二次函数与方程的关系,通过数形结合的方法求解.
30、在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.
(1)如图,当m=2时,点P是抛物线CD段上的一个动点.
①求A,B,C,D四点的坐标;
②当△PAB面积最大时,求点P的坐标;
(2)在y轴上有一点M(0,m),当点C在线段MB上时,
①求m的取值范围;
②求线段BC长度的最大值.
[思路分析](1)根据函数上点的坐标特点可分别得出A,B,C,D的坐标;①当m=2时,代入上述坐标即可得出结论;
②过点P作PE∥y轴交直线AB于点E,设点P的横坐标为t,所以P(t,﹣t2+4t﹣2),E(t,2t﹣4).根据三角形的面积公式可得△PAB的面积,再利用二次函数的性质可得出结论;
(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),①y轴上有一点M(0,m),点C在线段MB上,需要分两种情况:当点M的坐标大于点B的坐标时;当点M的坐标小于点B的坐标时,分别得出m的取值范围即可;
②根据①中的条件可知,分两种情况,分别得出BC的长度,利用二次函数的性质可得出结论.
[答案详解]解:(1)∵直线y=mx﹣2m与x轴,y轴分别交于A,B两点,
∴A(2,0),B(0,﹣2m);
∵y=﹣(x﹣m)2+2,
∴抛物线的顶点为D(m,2),
令x=0,则y=﹣m2+2,
∴C(0,﹣m2+2).
①当m=2时,﹣2m=﹣4,﹣m2+2=﹣2,
∴B(0,﹣4),C(0,﹣2),D(2,2).
②由上可知,直线AB的解析式为:y=2x﹣4,抛物线的解析式为:y=﹣x2+4x﹣2.
如图,过点P作PE∥y轴交直线AB于点E,
设点P的横坐标为t,
∴P(t,﹣t2+4t﹣2),E(t,2t﹣4).
∴PE=﹣t2+4t﹣2﹣(2t﹣4)=﹣t2+2t+2,
∴△PAB的面积为:×(2﹣0)×(﹣t2+2t+2)=﹣(t﹣1)2+3,
∵﹣1<0,
∴当t=1时,△PAB的面积的最大值为3.
此时P(1,1).
(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),
①∵y轴上有一点M(0,m),点C在线段MB上,
∴需要分两种情况:
当m≥﹣m2+2≥﹣2m时,可得≤m≤1+,
当m≤﹣m2+2≤﹣2m时,可得﹣3≤m≤1﹣,
∴m的取值范围为:≤m≤1+或﹣3≤m≤1﹣.
②当≤m≤1+时,
∵BC=﹣m2+2﹣(﹣2m)=﹣m2+2m+2=﹣(m﹣1)2+3,
∴当m=1时,BC的最大值为3;
当m≤﹣m2+2≤﹣2m时,即﹣3≤m≤1﹣,
∴BC=﹣2m﹣(﹣m2+2)=m2﹣2m﹣2=(m﹣1)2﹣3,
当m=﹣3时,点M与点C重合,BC的最大值为13.
∴当m=﹣3时,BC的最大值为13.
[经验总结]本题属于二次函数综合题,主要考查二次函数上点的坐标特点,三角形的面积,不等式的应用,分类讨论思想等相关内容,第二问注意需要分类讨论.