第二十一章 一元二次方程单元同步检测试题(含解析)

文档属性

名称 第二十一章 一元二次方程单元同步检测试题(含解析)
格式 zip
文件大小 1.5MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-10-02 20:01:55

图片预览

文档简介

中小学教育资源及组卷应用平台
第二十一章《一元二次方程》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一.选择题(共10小题,每题3分,共30分)
1.有下列方程:
①;②;③;④.
其中能用直接开平方法做的是( )
A.①②③ B.②③ C.②③④ D.①②③④
2.一元二次方程中,二次项系数、一次项系数及常数项分别是( )
A.,, B.,,
C.,, D.,,
3.若方程式的两根均为正数,其中为整数,则的最小值为何?( )
A. B. C. D.
4.若,是一元二次方程的两个根,则,的值是( )
A., B., C., D.,
5.下列方程中,有两个不相等实数根的是( )
A. B.
C. D.
6.方程的左边配成完全平方式后所得的方程为( )
A. B.
C. D.以上都不对
7.若,是一元二次方程的两个根,则的值是( )
A. B. C. D.
8.一元二次方程的解为( )
A., B.,
C., D.,
9.某文具店二月销售签字笔40支,三月、四月销售量连续增长,四月销售量为90支,求月平均增长率.设月平均增长率为x,则由已知条件列出的方程是(  )
A.40(1+x2)=90 B.40(1+2x)=90 C.40(1+x)2=90 D.90(1﹣x)2=40
10.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则(  )
A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8
C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8
二、填空题(每题3分,共24分)
11. 一元二次方程的解是________.
12.关于的方程有两个相等的实数根,则实数的值为________.
13.已知,,,则________.
14.方程 的解是________.
15.代数式的最小值为________.
16.已知关于的一元二次方程有实数根,则的取值范围是________.
17.已知关于的方程两个根是互为相反数,则的值为________.
18.某公司今年一月份的利润为万元,三月份的利润下降到万元,为量化该公司一月份至三月份利润下降的速度,请你提出一个数字问题为________.
三.解答题(共46分,19题6分,20 ---24题8分)
19.解方程:
(1)x2+2x﹣3=0; (2)2(5x﹣1)2=5(5x﹣1);
(3)(x+3)2﹣(2x﹣3)2=0; (4)3x2﹣4x﹣1=0.
20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.
21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.
22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.
23.积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.
(1)求年销售量y与销售单价x的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?
24.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.
假设该公司2、3、4月每个月生产成本的下降率都相同.
(1)求每个月生产成本的下降率;
(2)请你预测4月份该公司的生产成本.
参考答案与试题解析
1. 选择题(共10小题)
题号 1 2 3 4 5 6 7 8 9 10
答案 C A B D A A C B D A
二.填空题(共8小题)
11.或
12.
13.
14.,
15.
16.且
17.
18.该公司一到三月份平均每月利润下降的百分率是多少?
三.解答题(共7小题)
19.解:(1)分解因式得:(x+3)(x﹣1)=0,
可得x+3=0或x﹣1=0,
解得:x1=﹣3,x2=1;
(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,
分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,
可得5x﹣1=0或10x﹣7=0,
解得:x1=0.2,x2=0.7;
(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,
可得3x=0或﹣x+6=0,
解得:x1=0,x2=6;
(4)这里a=3,b=﹣4,c=﹣1,
∵△=16+12=28>0,
∴x==,
解得:x1=,x2=.
20.解:设方程另一个根为x1,
根据题意得2x1=﹣6,解得x1=﹣3,
即方程的另一个根是﹣3.
21.解:(1)∵方程有两个实数根x1,x2,
∴△=(2k﹣2)2﹣4k2≥0,
解得k≤;
(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,
∵k≤,
∴2k﹣2<0,
又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.
解得k=4(不合题意,舍去)或k=﹣6,
∴k=﹣6.
22.解:当a=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+b=12,
∴b=8,
而4+4≠0,不符合题意;
当b=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+a=12,
而4+4=8,不符合题意;
当a=b时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴12=a+b,解得a=b=6,
∴m+2=36,
∴m=34.
23.解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),
将(40,600)、(45,550)代入y=kx+b,得:
,解得:,
∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.
(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,
根据题意得:(x﹣30)(﹣10x+1000)=10000,
整理,得:x2﹣130x+4000=0,
解得:x1=50,x2=80.
∵此设备的销售单价不得高于70万元,
∴x=50.
答:该设备的销售单价应是50万元/台.
 
24.解:(1)设每个月生产成本的下降率为x,
根据题意得:400(1﹣x)2=361,
解得:x1=0.05=5%,x2=1.95(不合题意,舍去).
答:每个月生产成本的下降率为5%.
(2)361×(1﹣5%)=342.95(万元).
答:预测4月份该公司的生产成本为342.95万元.