1.2一定是直角三角形吗 学案

文档属性

名称 1.2一定是直角三角形吗 学案
格式 zip
文件大小 3.3MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2013-10-29 08:48:04

图片预览

文档简介

2 一定是直角三角形吗
1.勾股定理的逆定理
(1)勾股定理的逆定理的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
(2)勾股定理的逆定理的释疑:不少的同学对知道三角形三边满足a2+b2=c2能得到直角三角形这样的一种结论持有怀疑的态度,其实通过三角形的全等可以很简单地证明出来.比如:如果在△ABC中,AB=c,BC=a,CA=b,并且满足a2+b2=c2(如图所示),那么∠C=90°.
作△A1B1C1,使∠C1=90°,B1C1=a,C1A1=b,则A1B=a2+b2.
∵a2+b2=c2,∴A1B1=c(A1B1>0).
在△ABC和△A1B1C1中,
∵BC=a=B1C1,CA=b=C1A1,AB=c=A1B1,
∴△ABC≌△A1B1C1.
∴∠C=∠C1=90°.
辨误区 勾股定理的逆定理的条件
(1)不能说成在直角三角形中,因为还没有确定直角三角形,当然也不能说“斜边”和“直角边”.
(2)当满足a2+b2=c2时,c是斜边,∠C是直角.
利用勾股定理的逆定理判断一个三角形是否为直角三角形的思路是:先确定最长边,算出最长边的平方及另两边的平方和,如果最长边的平方与另两边的平方和相等,则此三角形为直角三角形.
对啊!到目前为止判定直角三角形的方法有:①说明三角形中有一个直角;②说明三角形中有两边互相垂直;③勾股定理的逆定理.
【例1】 如图所示,∠C=90°,AC=3,BC=4,AD=12,BD=13,问:AD⊥AB吗?试说明理由.
解:AD⊥AB.
理由:根据勾股定理得AB==5.
在△ABD中,AB2+AD2=52+122=169,BD2=132=169,
所以AB2+AD2=BD2.
由勾股定理的逆定理知△ABD为直角三角形,且∠BAD=90°.
故AD⊥AB.
2.勾股定理的逆定理与勾股定理的关系
勾股定理是通过“形”的状态来反映“数”的关系的,而勾股定理的逆定理是通过“数”的关系来反映“形”的状态的.
(1)勾股定理是直角三角形的性质定理,勾股定理的逆定理是直角三角形的判定定理,二者是互逆的.
(2)联系:①两者都与a2+b2=c2有关,②两者所讨论的问题都是直角三角形问题.
(3)区别:勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形三边的数量关系“a2+b2=c2”;勾股定理的逆定理则是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是“直角三角形”.
(4)二者关系可列表如下:
定理 勾股定理 勾股定理的逆定理
内容 如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形
题设 直角三角形的两直角边长分别为a,b,斜边长为c 三角形的三边长a,b,c满足a2+b2=c2
结论 a2+b2=c2 三角形是直角三角形
用途 是直角三角形的一个性质 判定直角三角形的一种方法
【例2】 如图,在△ABC中,D为BC边上的点,已知:AB=13,AD=12,AC=15,BD=5,求DC.
分析:先用勾股定理的逆定理判定形状,然后用勾股定理求数据.
解:∵AD2+BD2=122+52=132=AB2,
∴由勾股定理的逆定理知△ADB为直角三角形.∴AD⊥BC.
在Rt△ADC中,由勾股定理,得DC2=AC2-AD2=152-122=92.∴DC=9.
3.勾股数
勾股数:满足a2+b2=c2的三个正整数,称为勾股数.
(1)由定义可知,一组数是勾股数必须满足两个条件:①满足a2+b2=c2;②都是正整数.两者缺一不可.
(2)将一组勾股数同时扩大或缩小相同的倍数所得的数仍满足a2+b2=c2(但不一定是勾股数),以它们为边长的三角形是直角三角形,比如以0.3 cm,0.4 cm,0.5 cm为边长的三角形是直角三角形.
【例3】 ①7,24,25;②8,15,19;③0.6,0.8,1.0;④3n,4n,5n(n>1,且为自然数).
上面各组数中,勾股数有______组.(  ).
A.1 B.2 C.3 D.4
解析:
① √ ∵72+242=252,且7,24,25都是正整数,∴7,24,25是勾股数.
② × ∵82+152≠192,∴8,15,19不是勾股数.
③ × ∵0.6,0.8,1.0不是正整数,∴0.6,0.8,1.0不是勾股数.
④ √ ∵(3n)2+(4n)2=25n2=(5n)2(n>1,且为自然数),且它们都是正整数,∴3n,4n,5n(n>1,且为自然数)是勾股数.
答案:B
析规律 勾股数的判断方法
判断勾股数要看两个条件,一看能否满足a2+b2=c2,二看是否都是正整数.这两者缺一不可.
4.勾股定理的逆定理的应用
勾股定理的逆定理在解决实际问题中有着广泛的应用,可以用它来判定是不是直角.家里建房时,常需要在现场画出直角,在没有测量角的仪器的情况下,工人师傅常常利用勾股定理的逆定理作出直角.
【例4】 如图是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8 m,AD=BC=6 m,AC=9 m,请你帮他看一下,挖的地基是否合格?
分析:本题是数学问题在生活中的实际应用,所以我们要把实际问题转化成数学问题来解决,运用直角三角形的判定条件,来判断它是否为直角三角形.
解:∵AD2+DC2=62+82=100,AC2=92=81,
∴AD2+DC2≠AC2.
∴△ADC不是直角三角形,∠ADC≠90°.
又∵按标准应为长方形,四个角应为直角,
∴该农民挖的地基不合格.
5.利用非负数的性质判定三角形的形状
在由一个等式求三角形的三边长时,往往先把等式化为a2+b2+c2=0的形式,再由a=0,b=0,c=0,求得三角形三边之长,利用计算来判断△ABC是否是直角三角形.
谈重点 判定三角形的形状
由条件等式来判断三角形的形状,就是将已知的条件等式变形,再根据它的结构特点,得出a,b,c的关系,从而判断三角形的形状.
【例5】 如果一个三角形的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,试说明这个三角形是直角三角形.
分析:本题需要将已知等式进行变形,配成完全平方式,求出a,b,c的值,然后再说明.
解:将式子变形,得
a2+b2+c2+338-10a-24b-26c=0,
即a2-10a+25+b2-24b+144+c2-26c+169=0.
整理,得(a-5)2+(b-12)2+(c-13)2=0.
因此a-5=0,b-12=0,c-13=0,
∴a=5,b=12,c=13.
∵a2+b2=52+122=132=c2,
∴这个三角形是直角三角形.
6.勾股定理及其逆定理的综合应用
(1)利用勾股定理解决生活中的实际问题时,关键是利用转化的思想把实际问题转化为数学模型(直角三角形)来解决.
(2)综合运用勾股定理及其逆定理,将不规则图形转化为规则图形是常用的数学方法,在这里,一方面要熟记常用的勾股数;另一方面要注意到:如果一个三角形的三边长已知或具有某些比例关系,那么就可以用勾股定理的逆定理去验证其是否是直角三角形.
【例6】 如图所示,在四边形ABCD中,AD=3 cm,AB=4 cm,∠BAD=90°,BC=12 cm,CD=13 cm.求四边形ABCD的面积.
分析:根据AD=3 cm,AB=4 cm,∠BAD=90°,可连接BD构成直角三角形,通过判断△BCD是直角三角形解决问题.
解:连接BD,在△ABD中,∵AD=3 cm,AB=4 cm,∠BAD=90°,
根据勾股定理,得BD2=AD2+AB2=32+42=52,∴BD=5 cm.
在△BCD中,∵BD=5 cm,BC=12 cm,CD=13 cm,BD2+BC2=CD2,∴△BCD是直角三角形.
∴四边形ABCD的面积=S△ABD+S△BCD
=×3×4+×5×12=36 cm2.