何时获得最大利润[下学期]

文档属性

名称 何时获得最大利润[下学期]
格式 rar
文件大小 508.6KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2009-09-27 22:32:00

图片预览

文档简介

课件15张PPT。6.二次函数的应用
(1)何时获得最大利润
请你帮助分析:销售单价是多少时,可以获利最多?何时获得最大利润 某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.设销售价为x元(x≤13.5元),那么何时获得最大利润 某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.销售量可表示为 : 件;销售额可表示为: 元;所获利润可表示为: 元;当销售单价为 元时,可以获得最大利润,最大利润是 元.我们还曾经利用列表的方法得到一个数据,现在请你验证一下你的猜测(增种多少棵橙子树时,总产量最大?)是否正确.
与同伴进行交流你是怎么做的.何时橙子总产量最大还记得本章一开始涉及的“种多少棵橙子树”的问题吗?何时橙子总产量最大某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.1.利用函数表达式描述橙子的总产量x与增种橙子树的棵数y之间的关系.2.增种多少棵橙子,可以使橙子的总产量在60400个以上?2.利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.?何时橙子总产量最大1.利用函数表达式描述橙子的总产量x与增种橙子树的棵数y之间的关系.3.增种多少棵橙子,可以使橙子的总产量在60400个以上?若你是商店经理,你需要多长时间定出这个销售单价?何时获得最大利润 某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?解:设提高售价x元,在半个月内获得的利润是y元,根据题意,得喷泉与二次函数如图所示,某公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.
(1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外?
(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?喷泉与二次函数根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.解:(1)如图,建立如图所示的坐标系,根据题意得,A点坐标为(0,1.25),顶点B坐标为(1, 2.25).当y=0时,可求得点C的坐标为(2.5,0);同理,点D的坐标为(-2.5,0).设抛物线为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25. ●
C(2.5,0)●
D(-2.5,0)喷泉与二次函数由此可知,如果不计其它因素,那么水流的最大高度应达到约3.72m.解:(2)如图,根据题意得,A点坐标为(0,1.25),点C坐标为(3.5,0).或设抛物线为y=-x2+bx+c,由待定系数法可求得抛物线表达式为:y=-x2+22/7+5/4.设抛物线为y=-(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-11/7)2+729/196. ●
C(3.5,0)●
D(-3.5,0)●B(1.57,3.72)(2)若水流喷出的抛物线形状与(1)相同,水池的半径为
3.5m,要使水流不落到池外,此时水流的最大高度应达到
多少m(精确到0.1m)?跳水运动与抛物线某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是经过原点O的一条抛物线.在跳某规定动作时,正常情况下,该运动员在空中的最高处距水面32/3米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
(1)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为18/5米,问此次跳水会不会失误?并通过计算说明理由.你知道吗,平时我们在跳大绳时,绳甩到最高处的形状可以看为抛物线.如图所示,正在甩绳的甲乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙丁分别站在距甲拿绳的手水平距离1米2.5米处,绳子到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5米,求学生丁的身高?函数y=ax2+bx+c(a≠0)的应用(-2,1)(2,1)(-1,1.5)1.相同点: (1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随 x的增大而增大. a<0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随 x的增大而减小 . 2.不同点: (1)位置不同(2)顶点不同:分别是 和(0,0).
(3)对称轴不同:分别是 和y轴.
(4)最值不同:分别是 和0.
3.联系: y=a(x-h)2+k(a≠0) 的图象可以看成y=ax2的图象先沿x轴整体左(右)平移| |个单位(当 >0时,向右平移;当 <0时,向左平移),再沿对称轴整体上(下)平移| |个单位 (当 >0时向上平移;当 <0时,向下平移)得到的.回味无穷二次函数y=ax2+bx+c(a≠0)与=ax2的关系知识的升华P61 习题2.6 1,2题.
祝你成功!结束寄语生活是数学的源泉.再见