2022-2023学年苏科版数学九年级下册5.1 二次函数 解答专练(原卷+解析)

文档属性

名称 2022-2023学年苏科版数学九年级下册5.1 二次函数 解答专练(原卷+解析)
格式 zip
文件大小 116.3KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2022-10-03 16:38:15

文档简介

5.1 二次函数
— 解答专练 —
> > > 精品解析 < < <
1、已知函数y=(m2+m).
(1)当函数是二次函数时,求m的值;   ;
(2)当函数是一次函数时,求m的值.   .
[思路分析](1)这个式子是二次函数的条件是:m2﹣2m+2=2并且m2+m≠0;
(2)这个式子是一次函数的条件是:m2﹣2m+2=1并且m2+m≠0.
[答案详解]解:(1)依题意,得m2﹣2m+2=2,
解得m=2或m=0;
又因m2+m≠0,
解得m≠0且m≠﹣1;
因此m=2.
(2)依题意,得m2﹣2m+2=1
解得m=1;
又因m2+m≠0,
解得m≠0且m≠﹣1;
因此m=1.
[经验总结]本题主要考查一次函数与二次函数的定义与一般形式.
2、已知函数y=m(m+2)x2+mx+m+1.
(1)当m为何值时,此函数是一次函数?
(2)当m为何值时,此函数是二次函数?
[思路分析](1)直接利用一次函数的定义进而分析得出答案;
(2)直接利用二次函数的定义进而分析得出答案.
[答案详解]解:(1)∵函数y=m(m+2)x2+mx+m+1是一次函数,
∴m(m+2)=0且m≠0,
解得:m=﹣2;
当m=﹣2时,此函数是一次函数;
(2)∵函数y=m(m+2)x2+mx+m+1是二次函数,
∴m(m+2)≠0,
解得:m≠﹣2且m≠0,
当m≠﹣2且m≠0时,此函数是二次函数.
[经验总结]此题主要考查了一次函数以及二次函数的定义,正确把握一次函数以及二次函数的定义是解题的关键.
3、已知函数y=(m2+2m)x2+mx+m+1,
(1)当m为何值时,此函数是一次函数?
(2)当m为何值时,此函数是二次函数?
[思路分析](1)直接利用一次函数的定义进而分析得出答案;
(2)直接利用二次函数的定义进而分析得出答案.
[答案详解]解:(1)∵函数y=(m2+2m)x2+mx+m+1,是一次函数,
∴m2+2m=0,m≠0,
解得:m=﹣2;
(2)∵函数y=(m2+2m)x2+mx+m+1,是二次函数,
∴m2+2m≠0,
解得:m≠﹣2且m≠0.
[经验总结]此题主要考查了一次函数以及二次函数的定义,正确把握次数与系数的值是解题关键.
4、一个二次函数y=(k﹣1)+2x﹣1.
(1)求k值.
(2)求当x=0.5时y的值?
[思路分析](1)根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数可得k2﹣3k+4=2,且k﹣1≠0,再解即可;
(2)根据(1)中k的值,可得函数解析式,再利用代入法把x=0.5代入可得y的值.
[答案详解]解:(1)由题意得:k2﹣3k+4=2,且k﹣1≠0,
解得:k=2;
(2)把k=2代入y=(k﹣1)+2x﹣1得:y=x2+2x﹣1,
当x=0.5时,y=.
[经验总结]此题主要考查了二次函数以及求函数值,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件.
5、已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.
(1)若这个函数是一次函数,求m的值;
(2)若这个函数是二次函数,则m的值应怎样?
[思路分析]根据一次函数与二次函数的定义求解.
[答案详解]解:(1)根据一次函数的定义,得:m2﹣m=0
解得m=0或m=1
又∵m﹣1≠0即m≠1;
∴当m=0时,这个函数是一次函数;
(2)根据二次函数的定义,得:m2﹣m≠0
解得m1≠0且m2≠1
∴当m1≠0且m2≠1时,这个函数是二次函数.
[经验总结]解题关键是掌握一次函数与二次函数的定义.
6、若函数y=(m+1)是关于x的二次函数,求m的值.
[思路分析]根据二次函数定义可得m2+1=2且m+1≠0,求解即可.
[答案详解]解:∵函数y=(m+1)是关于x的二次函数,
∴m2+1=2,m+1≠0,
解得m=1,
∴m的值为1.
[经验总结]此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.
7、当m为何值时,y=(m+1)x+3x﹣2是二次函数?
[思路分析]直接利用二次函数的定义分析得出答案.
[答案详解]解:∵y=(m+1)x+3x﹣2是二次函数,
∴m2﹣3m﹣2=2,
解得:m1=4,m2=﹣1,
∵m+1≠0,
∴m≠﹣1,
故m=4.
[经验总结]此题主要考查了二次函数的定义,正确把握定义是解题关键.
8、已知函数是二次函数,求k的值.
[思路分析]直接利用二次函数定义得出符合题意的k的值.
[答案详解]解:∵函数是二次函数,
∴k2﹣k=2且k﹣2≠0
解得:k=﹣1.
[经验总结]此题主要考查了二次函数定义,关键是掌握二次函数的形式为y=ax2+bx+c,(a、b、c为常数,a≠0).
9、已知函数y=(m2﹣m)x2+mx+(m+1),m是常数.
(1)若这个函数是一次函数,求m的值;
(2)若这个函数是二次函数,求m的值.
[思路分析](1)根据二次项的系数等于零,一次项的系数不等于零,可得方程组,根据解方程组,可得答案;
(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.
[答案详解]解:依题意得

∴m=1
(2)依题意得m2﹣m≠0∴m≠0且m≠1.
[经验总结]本题考查了二次函数的定义,二次函数的二次项的系数不等于零是解题关键.
10、若y=(a2+a)x是二次函数,求a的值.
[思路分析]根据二次函数的定义列出方程求解则可.
[答案详解]解:根据题意得:a2﹣a=2且a2+a≠0
解得a=2.
[经验总结]此题考查的是二次函数的定义,根据题意列出方程和不等式是解决此题关键.
11、已知函数y=(m2﹣m)x2+mx﹣2(m为常数),根据下列条件求m的值:
(1)y是x的一次函数;
(2)y是x的二次函数.
[思路分析]根据一次函数和二次函数的定义可以解答.
[答案详解]解:(1)y是x的一次函数,则可以知道,m2﹣m=0,解之得:m=1,或m=0,又因为m≠0,所以,m=1.
(2)y是x的二次函数,只须m2﹣m≠0,
∴m≠1和m≠0.
[经验总结]本题考查了一次函数与二次函数的定义,熟记概念是解答本题的关键.
12、函数是关于x的二次函数,求m的值.
[思路分析]利用二次函数定义进行解答即可.
[答案详解]解:由题意可知
解得:m=2.
[经验总结]此题主要考查了二次函数定义,关键是掌握二次函数定义,要抓住二次项系数不为0这个关键条件.
13、已知y=(m﹣4)+2x2﹣3x﹣1是关于x的函数
(1)当m为何值时,它是y关于x的一次函数;
(2)当m为何值时,它是y关于x的二次函数.
[思路分析](1)根据形如y=kx+b (k≠0)是一次函数,可得答案;
(2)根据形如y=ax2+bx+c (a≠0)是二次函数,可得答案.
[答案详解]解:(1)由y=(m﹣4)+2x2﹣3x﹣1是关于x的一次函数,

解得m=2,
当m=2时,它是y关于x的一次函数
(2)由y=(m﹣4)+2x2﹣3x﹣1是关于x的二次函数,得
①m﹣4=0,
解得m=4;
②m2﹣m=1,
解得m=;

解得m=﹣1,
④m2﹣m=0,
解得m=0或m=1,
综上所述,当m=0或m=1或m=4或或﹣1时,它是y关于x的二次函数.
[经验总结]本题考查了二次函数的定义,一次函数的一次项系数不等于零二次项系数等于零是解题关键,注意二次函数的二次项系数不等于零.
14、已知函数.
(1)当m为何值时,此函数是正比例函数?
(2)当m为何值时,此函数是二次函数?
[思路分析](1)利用正比例函数的定义进而得出m的值;
(2)利用二次函数的定义进而得出m的值.
[答案详解]解:(1)因为函数y=(m+3)是正比例函数,
所以m2﹣7=1且m+3≠0,
解得:m1=﹣2(舍去),m2=2,
所以当m=2时,此函数是正比例函数;
(2)因为函数y=(m+3)是二次函数,
所以m2﹣7=2且m+3≠0,
解得:m=3,
所以当m=3时,此函数是二次函数.
[经验总结]此题主要考查了正比例函数和二次函数的定义,正确把握正比例函数和二次函数的定义是解题关键.正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.
15、已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.
(1)当m为何值时,这个函数是关于x的一次函数;
(2)当m为何值时,这个函数是关于x的二次函数.
[思路分析](1)根据二次项的系数等于零,一次项的系数不等于零,可得方程和不等式,根据解方程和不等式,可得答案;
(2)根据二次项的系数不等于零,可得不等式,根据不等式,可得答案.
[答案详解]解:(1)依题意得:,
解得:m=0;
所以当m=0时,这个函数是关于x的一次函数;
(2)依题意得m2﹣m≠0,
解得:m≠0且m≠1.
所以当m≠0和1时,这个函数是关于x的二次函数.
[经验总结]本题考查了一次函数与二次函数的定义.一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数;一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.掌握定义是解题关键.
16、已知函数 y=(m﹣1)+3x为二次函数,求m的值.
[思路分析]根据二次函数的定义,列出一个式子即可解决问题.
[答案详解]解:由题意:,解得m=﹣1,
∴m=﹣1时,函数 y=(m﹣1)+3x为二次函数.
[经验总结]本题考查二次函数的定义,记住二次函数的定义是解题的关键,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.
17、已知函数是二次函数,求k的值.
[思路分析]根据二次函数的定义列出不等式求解即可.
[答案详解]解:∵函数是二次函数,
∴,
解得k=2.
[经验总结]本题考查二次函数的定义,二次函数的次数是二,系数不等于零是解题关键.
18、当系数a,b,c满足什么条件时,函数y=ax2+bx+c是二次函数?是一次函数?是正比例函数?
[思路分析]根据二次函数和一次函数、正比例函数定义进行解答即可.
[答案详解]解:函数y=ax2+bx+c中a≠0,b和c为任意常数时是二次函数,
a=0,b≠0,c为任意常数时是一次函数;
a=0,b≠0,c=0时是正比例函数.
[经验总结]此题主要考查了二次函数和一次函数、正比例函数,关键是掌握三种函数定义.
19、若y=(m﹣1)x+3.
(1)m取什么值时,此函数是二次函数?
(2)m取什么值时,此函数是一次函数?
[思路分析](1)形如y=ax2+bx+c(a≠0)的函数叫做二次函数,根据二次函数的定义即可判断;
(2)形如y=kx+b(k≠0)的函数叫做二次函数,根据一次函数的定义即可判断.
[答案详解]解:(1)当y=(m﹣1)x+3是二次函数时,
有,
解得m=﹣3,
∴当m=﹣3时,此函数是二次函数;
(2)当y=(m﹣1)x+3是一次函数时,
有,
解得m=﹣1+或m=﹣1﹣,
∴当m=﹣1+或m=﹣1﹣时,此函数是一次函数.
[经验总结]本题主要考查二次函数和一次函数的定义,关键是要牢记二次函数和一次函数的定义.
20、已知函数y=﹣(m+2)xm2﹣2(m为常数),求当m为何值时:
(1)y是x的一次函数?
(2)y是x的二次函数?并求出此时纵坐标为﹣8的点的坐标.
[思路分析](1)根据形如y=kx(k≠0,k是常数)是一次函数,可得一次函数;
(2)根据形如y=ax2(a是常数,且a≠0)是二次函数,可得答案,根据函数值,可得自变量的值,可得符合条件的点.
[答案详解]解:(1)由y=﹣(m+2)xm2﹣2(m为常数),y是x的一次函数,得

解得m=,
当m=时,y是x的一次函数;
(2)y=﹣(m+2)xm2﹣2(m为常数),是二次函数,得

解得m=2,m=﹣2(不符合题意的要舍去),
当m=2时,y是x的二次函数,
当y=﹣8时,﹣8=﹣4x2,
解得x=,
故纵坐标为﹣8的点的坐标的坐标是(,﹣8).
[经验总结]本题考查了二次函数的定义,利用了二次函数的定义,一次函数的定义,注意二次项的系数不能为零.5.1 二次函数
— 解答专练 —
1、已知函数y=(m2+m).
(1)当函数是二次函数时,求m的值;   ;
(2)当函数是一次函数时,求m的值.   .
2、已知函数y=m(m+2)x2+mx+m+1.
(1)当m为何值时,此函数是一次函数?
(2)当m为何值时,此函数是二次函数?
3、已知函数y=(m2+2m)x2+mx+m+1,
(1)当m为何值时,此函数是一次函数?
(2)当m为何值时,此函数是二次函数?
4、一个二次函数y=(k﹣1)+2x﹣1.
(1)求k值.
(2)求当x=0.5时y的值?
5、已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.
(1)若这个函数是一次函数,求m的值;
(2)若这个函数是二次函数,则m的值应怎样?
6、若函数y=(m+1)是关于x的二次函数,求m的值.
7、当m为何值时,y=(m+1)x+3x﹣2是二次函数?
8、已知函数是二次函数,求k的值.
9、已知函数y=(m2﹣m)x2+mx+(m+1),m是常数.
(1)若这个函数是一次函数,求m的值;
(2)若这个函数是二次函数,求m的值.
10、若y=(a2+a)x是二次函数,求a的值.
11、已知函数y=(m2﹣m)x2+mx﹣2(m为常数),根据下列条件求m的值:
(1)y是x的一次函数;
(2)y是x的二次函数.
函数是关于x的二次函数,求m的值.
13、已知y=(m﹣4)+2x2﹣3x﹣1是关于x的函数
(1)当m为何值时,它是y关于x的一次函数;
(2)当m为何值时,它是y关于x的二次函数.
14、已知函数.
(1)当m为何值时,此函数是正比例函数?
(2)当m为何值时,此函数是二次函数?
15、已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.
(1)当m为何值时,这个函数是关于x的一次函数;
(2)当m为何值时,这个函数是关于x的二次函数.
已知函数 y=(m﹣1)+3x为二次函数,求m的值.
已知函数是二次函数,求k的值.
当系数a,b,c满足什么条件时,函数y=ax2+bx+c是二次函数?是一次函数?是正比例函数?
19、若y=(m﹣1)x+3.
(1)m取什么值时,此函数是二次函数?
(2)m取什么值时,此函数是一次函数?
20、已知函数y=﹣(m+2)xm2﹣2(m为常数),求当m为何值时:
(1)y是x的一次函数?
(2)y是x的二次函数?并求出此时纵坐标为﹣8的点的坐标.