高中物理:电磁感应中的动力学及能量问题(含解析)

文档属性

名称 高中物理:电磁感应中的动力学及能量问题(含解析)
格式 doc
文件大小 420.5KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2022-10-08 12:17:38

图片预览

文档简介

电磁感应中的动力学及能量问题
(时间:40分钟 分值:100分)
基础练
一、选择题(本题共6小题,每小题6分)
1.很多相同的绝缘铜圆环沿竖直方向叠放,形成一根长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口齐平.让条形磁铁从静止开始下落,条形磁铁在圆筒中的运动速率(  )
A.均匀增大
B.先增大,后减小
C.逐渐增大,趋于不变
D.先增大,再减小,最后不变
2.如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则(  )
A.ef将减速向右运动,但不是匀减速
B.ef将匀减速向右运动,最后停止
C.ef将匀速向右运动
D.ef将往返运动
3.(多选)如图所示,有两根和水平方向成α(α<90°)角的光滑平行的金属轨道,上端接有滑动变阻器R,下端足够长,空间有垂直于轨道平面向上的匀强磁场,磁感应强度为B,一根质量为m、电阻不计的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则(  )
A.如果B增大,vm将变大
B.如果α变大(仍小于90°),vm将变大
C.如果R变大,vm将变大
D.如果m变小,vm将变大
4.(多选)如图所示,金属杆ab以恒定的速率v在光滑平行导轨上向右滑行,设整个电路中总电阻为R(恒定不变),整个装置置于垂直纸面向里的匀强磁场中,下列叙述正确的是(  )
A.ab杆中的电流与速率v成正比
B.磁场作用于ab杆的安培力与速率v成正比
C.电阻R上产生的热功率与速率v的二次方成正比
D.外力对ab杆做功的功率与速率v成正比
5.如图所示,匀强磁场方向竖直向下,磁感应强度为B.正方形金属框abcd可绕光滑轴OO′转动,边长为L,总电阻为R,ab边质量为m,其他三边质量不计,现将abcd拉至水平位置,并由静止释放,经一定时间到达竖直位置,ab边的速度大小为v,则在金属框内产生热量大小等于(  )
A.     B.
C.mgL- D.mgL+
6.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,金属棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,金属棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于(  )
A.金属棒的机械能增加量
B.金属棒的动能增加量
C.金属棒的重力势能增加量
D.电阻R上放出的热量
二、非选择题(14分)
7.如图所示,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R的电阻,在两导轨间OO1O′1O′矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感应强度为B.一质量为m、电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0.现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:
(1)棒ab在离开磁场右边界时的速度;
(2)棒ab通过磁场区的过程中整个回路所消耗的电能.
提升练
一、选择题(本题共4小题,每小题6分)
1.(多选)(2021·全国甲卷)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍。现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示。不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平。在线圈下边进入磁场后且上边进入磁场前,可能出现的是(  )
A.甲和乙都加速运动
B.甲和乙都减速运动
C.甲加速运动,乙减速运动
D.甲减速运动,乙加速运动
2.如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行于MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则(  )
A.Q1>Q2,q1=q2   B.Q1>Q2,q1>q2
C.Q1=Q2,q1=q2 D.Q1=Q2,q1>q2
3.(多选)(2021·湖南卷)两个完全相同的正方形匀质金属框,边长为L,通过长为L的绝缘轻质杆相连,构成如图所示的组合体,距离组合体下底边H处有一方向水平、垂直纸面向里的匀强磁场。磁场区域上下边界水平,高度为L,左右宽度足够大,把该组合体在垂直磁场的平面内以初速度v0水平无旋转抛出,设置合适的磁感应强度大小B使其匀速通过磁场,不计空气阻力,下列说法正确的是(  )
A.B与v0无关,与成反比
B.通过磁场的过程中,金属框中电流的大小和方向保持不变
C.通过磁场的过程中,组合体克服安培力做功的功率与重力做功的功率相等
D.调节H、v0和B,只要组合体仍能匀速通过磁场,则其通过磁场的过程中产生的热量不变
4.(多选)用一段横截面半径为r、电阻率为ρ、密度为d的均匀导体材料做成一个半径为R(r R)的圆环.圆环竖直向下落入如图所示的径向磁场中,圆环的圆心始终在N极的轴线上,圆环所在位置的磁感应强度大小均为B.圆环在加速下滑过程中某一时刻的速度为v,忽略电感的影响,则(  )
A.此时在圆环中产生了(俯视)顺时针的感应电流
B.圆环因受到了向下的安培力而加速下落
C.此时圆环的加速度a=
D.如果径向磁场足够长,则圆环的最大速度vm=
二、非选择题(本题共2小题,共26分)
5.(13分)如图所示,两平行金属导轨位于同一水平面上,相距l,左端与一阻值为R的电阻相连,整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下.一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好.已知导体棒与导轨间的动摩擦因数为μ,重力加速率大小为g,导轨和导体棒的电阻均可忽略.求:
(1)电阻R消耗的功率;
(2)水平外力的大小.
6.(13分)如图甲所示,足够长、电阻不计的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:
甲        乙
(1)判断金属棒两端a、b的电势高低;
(2)磁感应强度B的大小;
(3)在金属棒ab开始运动的1.5 s内,电阻R上产生的热量.
参考答案:
基础练
一、选择题(本题共6小题,每小题6分)
1.很多相同的绝缘铜圆环沿竖直方向叠放,形成一根长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口齐平.让条形磁铁从静止开始下落,条形磁铁在圆筒中的运动速率(  )
A.均匀增大
B.先增大,后减小
C.逐渐增大,趋于不变
D.先增大,再减小,最后不变
C [对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选项C正确.]
2.如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则(  )
A.ef将减速向右运动,但不是匀减速
B.ef将匀减速向右运动,最后停止
C.ef将匀速向右运动
D.ef将往返运动
A [ef向右运动,切割磁感线产生感应电动势和感应电流,会受到向左的安培力而做减速运动,直到停止,但不是匀减速,由F=BIL==ma知,ef做的是加速度减小的减速运动,故A正确.]
3.(多选)如图所示,有两根和水平方向成α(α<90°)角的光滑平行的金属轨道,上端接有滑动变阻器R,下端足够长,空间有垂直于轨道平面向上的匀强磁场,磁感应强度为B,一根质量为m、电阻不计的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则(  )
A.如果B增大,vm将变大
B.如果α变大(仍小于90°),vm将变大
C.如果R变大,vm将变大
D.如果m变小,vm将变大
BC [金属杆由静止开始下滑的过程中,金属杆就相当于一个电源,与滑动变阻器R构成一个闭合回路,其受力情况如图所示,根据牛顿第二定律得:mgsin α-=ma
所以金属杆由静止开始做加速度逐渐减小的加速运动,当a=0时达到最大速度vm,即mgsin α=,可得:vm=,故由此式知选项B、C正确.]
4.(多选)如图所示,金属杆ab以恒定的速率v在光滑平行导轨上向右滑行,设整个电路中总电阻为R(恒定不变),整个装置置于垂直纸面向里的匀强磁场中,下列叙述正确的是(  )
A.ab杆中的电流与速率v成正比
B.磁场作用于ab杆的安培力与速率v成正比
C.电阻R上产生的热功率与速率v的二次方成正比
D.外力对ab杆做功的功率与速率v成正比
ABC [由E=Blv和I=得I=,所以安培力F=BIl=,电阻上产生的热功率P=I2R=,外力对ab做功的功率就等于回路产生的热功率,故A、B、C正确.]
5.如图所示,匀强磁场方向竖直向下,磁感应强度为B.正方形金属框abcd可绕光滑轴OO′转动,边长为L,总电阻为R,ab边质量为m,其他三边质量不计,现将abcd拉至水平位置,并由静止释放,经一定时间到达竖直位置,ab边的速度大小为v,则在金属框内产生热量大小等于(  )
A.     B.
C.mgL- D.mgL+
C [金属框绕光滑轴转动的过程中机械能有损失但能量守恒,损失的机械能为mgL-,故产生的热量为mgL-,答案C正确.]
6.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,金属棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,金属棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于(  )
A.金属棒的机械能增加量
B.金属棒的动能增加量
C.金属棒的重力势能增加量
D.电阻R上放出的热量
A [由动能定理有WF+W安+WG=ΔEk,则WF+W安=ΔEk-WG,WG<0,故ΔEk-WG表示机械能的增加量.故选A.]
二、非选择题(14分)
7.如图所示,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R的电阻,在两导轨间OO1O′1O′矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感应强度为B.一质量为m、电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0.现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:
(1)棒ab在离开磁场右边界时的速度;
(2)棒ab通过磁场区的过程中整个回路所消耗的电能.
[解析] (1)棒在磁场中匀速运动时,有F=F安=BIl,
再根据I==,
联立解得v=.
(2)安培力做的功转化成两个电阻消耗的电能Q,由能量守恒定律可得
F(d0+d)=Q+mv2,
解得Q=F(d0+d)-.
[答案] (1)
(2)F(d0+d)-
提升练
一、选择题(本题共4小题,每小题6分)
1.(多选)(2021·全国甲卷)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍。现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示。不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平。在线圈下边进入磁场后且上边进入磁场前,可能出现的是(  )
A.甲和乙都加速运动
B.甲和乙都减速运动
C.甲加速运动,乙减速运动
D.甲减速运动,乙加速运动
AB [两线圈的质量相等,线圈所用材料相同,则体积相同,甲线圈的匝数是乙的2倍,则甲的横截面积是乙的一半,长度是乙的2倍,由电阻定律可知,甲的电阻是乙的4倍;两线圈从同一高度同时由静止开始下落,则到达磁场上边界时两线圈的速度相同,设乙线圈的匝数为n,两线圈的边长均为l,两线圈进入磁场后,乙受到的安培力F乙=nBIl=,甲受到的安培力F甲==,可见,甲、乙受到的安培力大小相同,重力也相同,则运动情况相同,A、B正确.]
2.如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行于MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则(  )
A.Q1>Q2,q1=q2   B.Q1>Q2,q1>q2
C.Q1=Q2,q1=q2 D.Q1=Q2,q1>q2
A [根据功能关系知,线框上产生的热量等于克服安培力做的功,即Q1=W1=F1lbc=lbc=lab,同理Q2=lbc,又lab>lbc,故Q1>Q2;因q=t=t=,故q1=q2,故A正确.]
3.(多选)(2021·湖南卷)两个完全相同的正方形匀质金属框,边长为L,通过长为L的绝缘轻质杆相连,构成如图所示的组合体,距离组合体下底边H处有一方向水平、垂直纸面向里的匀强磁场。磁场区域上下边界水平,高度为L,左右宽度足够大,把该组合体在垂直磁场的平面内以初速度v0水平无旋转抛出,设置合适的磁感应强度大小B使其匀速通过磁场,不计空气阻力,下列说法正确的是(  )
A.B与v0无关,与成反比
B.通过磁场的过程中,金属框中电流的大小和方向保持不变
C.通过磁场的过程中,组合体克服安培力做功的功率与重力做功的功率相等
D.调节H、v0和B,只要组合体仍能匀速通过磁场,则其通过磁场的过程中产生的热量不变
CD [设金属框进入磁场时的竖直分速度为vy,可知vy=,金属框所受安培力F=BIL,电流I=,E=BLv,根据受力平衡可得mg=,可知B2与成反比,B与v0无关,A错误;金属框进入磁场和穿出磁场的过程中中,电流的大小保持不变,方向由逆时针变为顺时针,B错误;从下金属框进入磁场到上金属框离开磁场,整个过程金属框做匀速直线运动,安培力和重力等大反向,组合体克服安培力做功的功率与重力做功的功率相等,C正确;组合体从进入磁场到穿出磁场,不论怎样调节H、v0和B,只要组合体匀速通过磁场,在通过磁场的过程中,产生的热量始终等于减少的重力势能,D正确。]
4.(多选)用一段横截面半径为r、电阻率为ρ、密度为d的均匀导体材料做成一个半径为R(r R)的圆环.圆环竖直向下落入如图所示的径向磁场中,圆环的圆心始终在N极的轴线上,圆环所在位置的磁感应强度大小均为B.圆环在加速下滑过程中某一时刻的速度为v,忽略电感的影响,则(  )
A.此时在圆环中产生了(俯视)顺时针的感应电流
B.圆环因受到了向下的安培力而加速下落
C.此时圆环的加速度a=
D.如果径向磁场足够长,则圆环的最大速度vm=
AD [由右手定则可以判断感应电流的方向,可知选项A正确;由左手定则可以判断,此时圆环受到的安培力应该向上,选项B错误;对圆环受力分析可解得加速度a=g-,选项C错误;当重力等于安培力时速度达到最大,可得vm=,选项D正确.]
二、非选择题(本题共2小题,共26分)
5.(13分)如图所示,两平行金属导轨位于同一水平面上,相距l,左端与一阻值为R的电阻相连,整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下.一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好.已知导体棒与导轨间的动摩擦因数为μ,重力加速率大小为g,导轨和导体棒的电阻均可忽略.求:
(1)电阻R消耗的功率;
(2)水平外力的大小.
[解析] (1)导体棒切割磁感线运动产生的感应电动势为E=Blv,根据闭合电路欧姆定律,闭合回路中的感应电流为I=,电阻R消耗的功率为P=I2R,联立可得P=.
(2)对导体棒受力分析,受到向左的安培力和向左的摩擦力及向右的外力,三力平衡,故有
F安+μmg=F,F安=BIl=B··l,
故F=+μmg.
[答案] (1) (2)+μmg
6.(13分)如图甲所示,足够长、电阻不计的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:
甲        乙
(1)判断金属棒两端a、b的电势高低;
(2)磁感应强度B的大小;
(3)在金属棒ab开始运动的1.5 s内,电阻R上产生的热量.
[解析] (1)由右手定则可知,ab中的感应电流由a流向b,ab相当于电源,则b端电势高,a端电势低.
(2)由x t图象得t=1.5 s时金属棒的速度为:
v== m/s=7 m/s
金属棒匀速运动时所受的安培力大小为:F=BIL
I=,E=BLv
联立得:F=
根据平衡条件得:F=mg
则有:mg=
代入数据解得:B=0.1 T.
(3)金属棒ab在开始运动的1.5 s内,金属棒的重力势能减小,转化为金属棒的动能和电路的内能.设电路中产生的总焦耳热为Q
根据能量守恒定律得:mgx=mv2+Q
代入数据解得:Q=0.455 J
故R产生的热量为QR=Q=0.26 J.
[答案] (1)a端电势低,b端电势高
(2)0.1 T (3)0.26 J
PAGE