中小学教育资源及组卷应用平台
第二十一章《一元二次方程》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一.选择题(共10小题,每题3分,共30分)
1.下列方程是关于的一元二次方程的是( )
A.(、、是常数) B.
C. D.
2.若关于的一元二次方程的一个根是,则的值为( )
A. B. C.或 D.
3.用换元法解方程时,如果设,那么原方程可变形为( )
A. B.
C. D.
4.把一元二次方程化为一般形式正确的是( )
A. B.
C. D.
5.若,那么一元二次方程必有一根是( )
A. B. C. D.
6.用配方法解一元二次方程时,可配方得( )
A. B.
C. D.
7.已知三角形的两边长为4和5,第三边的长是方程x2﹣5x+6=0的一个根,则这个三角形的周长是( )
A.11 B.12 C.11或12 D.15
8.已知a+,则的值为( )
A.﹣1 B.1 C.2 D.不能确定
9.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )
A.20% B.25% C.50% D.62.5%
10.样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是( )
A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570
C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570
二、填空题(每题3分,共24分)
11.的解为________,________.
12.已知一元二次方程的两根为、,则________.
13.用配方法解,此方程配方形式为________.
14.已知一元二次方程x2+x﹣2021=0的两根分别为m,n,则+的值为 .
15.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根为x1,x2,使得x1x2﹣x12﹣x22=﹣16成立,则k的值 .
16.如果m、n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2021= .
17.如图,某小区规划在一个长、宽的长方形上修建三条同样宽的通道,使其中两条与平行,另一条与平行,其余部分种花草,使花草的种植面积共为.设通道的宽为,可依题意列得方程:________.
18.一块长方形草地的长和宽分别为和,在它四周外围环绕着宽度相等的小路,已知小路的面积为,则小路的宽度是________.
三.解答题(共46分,19题6分,20 ---24题8分)
19.解方程:
(1)x2+2x﹣3=0; (2)2(5x﹣1)2=5(5x﹣1);
(3)(x+3)2﹣(2x﹣3)2=0; (4)3x2﹣4x﹣1=0.
20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.
21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.
22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.
23.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
24.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.
(1)求n的值;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;
(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
参考答案与试题解析
1. 选择题(共10小题)
题号 1 2 3 4 5 6 7 8 9 10
答案 D A A C C B B C D A
二.填空题(共8小题)
11.
12.
13.
14.解:∵一元二次方程x2+x﹣2021=0的两根分别为m,n,
∴m+n=﹣1,mn=﹣2021,
∴+===,
故答案为:.
15.解:∵关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根,
∴△=(2k+1)2﹣4(k2+2k)≥0,
解得k≤,
由根与系数的关系得x1+x2=2k+1,x1x2=k2+2k,
∵x1x2﹣x12﹣x22=﹣16.
∴x1x2﹣[(x1+x2)2﹣2x1x2]=﹣16,
即﹣(x1+x2)2+3x1 x2=﹣16,
∴﹣(2k+1)2+3(k2+2k)=﹣16,
整理得k2﹣2k﹣15=0,
解得k1=5(舍去),k2=﹣3.
∴k=﹣3,
故答案为﹣3.
16.解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,
所以m,n是x2﹣x﹣3=0的两个不相等的实数根,
则根据根与系数的关系可知:m+n=1,mn=﹣3,
又n2=n+3,
则2n2﹣mn+2m+2021
=2(n+3)﹣mn+2m+2021
=2n+6﹣mn+2m+2021
=2(m+n)﹣mn+2027
=2×1﹣(﹣3)+2027
=2+3+2027
=2032.
故答案为:2032.
17.
18.
三.解答题(共7小题)
19.解:(1)分解因式得:(x+3)(x﹣1)=0,
可得x+3=0或x﹣1=0,
解得:x1=﹣3,x2=1;
(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,
分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,
可得5x﹣1=0或10x﹣7=0,
解得:x1=0.2,x2=0.7;
(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,
可得3x=0或﹣x+6=0,
解得:x1=0,x2=6;
(4)这里a=3,b=﹣4,c=﹣1,
∵△=16+12=28>0,
∴x==,
解得:x1=,x2=.
20.解:设方程另一个根为x1,
根据题意得2x1=﹣6,解得x1=﹣3,
即方程的另一个根是﹣3.
21.解:(1)∵方程有两个实数根x1,x2,
∴△=(2k﹣2)2﹣4k2≥0,
解得k≤;
(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,
∵k≤,
∴2k﹣2<0,
又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.
解得k=4(不合题意,舍去)或k=﹣6,
∴k=﹣6.
22.解:当a=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+b=12,
∴b=8,
而4+4≠0,不符合题意;
当b=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+a=12,
而4+4=8,不符合题意;
当a=b时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴12=a+b,解得a=b=6,
∴m+2=36,
∴m=34.
23.解:(1)设条纹的宽度为x米.依题意得
2x×5+2x×4﹣4x2=×5×4,
解得:x1=(不符合,舍去),x2=.
答:配色条纹宽度为米.
(2)条纹造价:×5×4×200=850(元)
其余部分造价:(1﹣)×4×5×100=1575(元)
∴总造价为:850+1575=2425(元)
答:地毯的总造价是2425元.
24.解:(1)由题意可得:40n=12,
解得:n=0.3;
(2)由题意可得:40+40(1+m)+40(1+m)2=190,
解得:m1=,m2=﹣(舍去),
∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),
(3)设第一年用乙方案治理降低了100n=100×0.3=30,
则(30﹣a)+2a=39.5,
解得:a=9.5,
则Q=20.5.
设第一年用甲方案整理降低的Q值为x,
第二年Q值因乙方案治理降低了100n=100×0.3=30,
解法一:(30﹣a)+2a=39.5
a=9.5
x=20.5
解法二:
解得: