2022-2023学年人教版八年级数学上册《12.2三角形全等的判定》同步分类练习题(附答案)
一.全等三角形的性质
1.如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=α,∠BFC=β,则( )
A.2α+β=180° B.2β﹣α=145° C.α+β=135° D.β﹣α=60°
二.全等三角形的判定
2.人们常用两个三角尺平分一个任意角,做法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,使两个三角尺的一直角边分别与OA,OB重合,移动三角尺使两个直角顶点分别与M,N重合,三角尺的另两条直角边相交于点C,作射线OC,可证得△MOC≌△NOC,从而得OC是∠AOB的平分线.在上述过程中,判定两个三角形全等的方法是( )
A.HL B.ASA C.SAS D.SSS
3.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画 个.
4.根据下列已知条件,能够画出唯一△ABC的是 (填写正确的序号).
①AB=5,BC=4,∠A=60°;②AB=5,BC=6,AC=7;③AB=5,∠A=50°,∠B=60°;④∠A=40°,∠B=50°,∠C=90°.
5.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD、CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD、CD、BE、CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接CD、BE、CE、BF、CF;…,依次规律,第200个图形中有全等三角形的对数是 .
小明的做法及思路 小明添加了条件:∠DAB=∠BCD.他的思路是分两种情况画图①、图②,在两幅图中,都作直线DA、BC,两直线交于点E 由∠DAB=∠BCD,可得∠EAB=∠ECD ∵AB=CD,∠E=∠E ∴△EAB≌△ECD,∴EB=ED,EA=EC 图①中ED﹣EA=EB﹣EC,即AD=CB 图②中EA﹣ED=EC﹣EB,即AD=CB 又∵∠DAB=∠BCD,∠AOD=∠COB ∴△AOD≌△COB
6.问题:已知线段AB、CD相交于点O,AB=CD.连接AD、BC,请添加一个条件,使得△AOD≌△COB
(1)数学老师说:小明的做法不正确,请你给出解释;
(2)请你重新添加一个满足问题要求的条件,并说明理由.
三.全等三角形的判定与性质
7.如图,在∠AOB中,OM平分∠AOB,MA⊥OA,垂足为A,MB⊥OB,垂足为B.若∠MAB=20°,则∠AOB的度数为( )
A.20° B.25° C.30° D.40°
8.如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是( )
A.2 B.2.5 C.3 D.
9.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于点D,连接EB.下列结论:①∠FAC=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°,正确的个数为( )个.
A.1 B.2 C.3 D.4
10.如图,已知AB=AD,BC=DE,AC=AE,且∠CAD=10°,∠EAB=120°,直线BC与AD、DE分别交于点F、G,则∠DGB的度数为 .
11.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为点E.若四边形ABCD的面积为16,则BE= .
12.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的序号为 .
已知:如图,△ABC≌△A′B′C′,CD、C′D′分别是AB、A′B′边上的中线.证明:CD=C′D′.
证明的途径可以用框图表示,请填写其中的空格.
14.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;
(1)延长MP交CN于点E(如图2),①求证:△BPM≌△CPE;②求证:PM=PN;
(2)若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由.
15.命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).
已知:如图,△ABC中,∠B=∠C.
求证:AB=AC.
三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.
(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由: ;
(2)请你按照小莉的思路完成命题的证明.
16.八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.
【探究与发现】
(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形
【理解与应用】
(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是 .
(3)已知:如图3,AD是△ABC的中线,∠BAC=∠ACB,点Q在BC的延长线上,QC=BC,求证:AQ=2AD.
17.如图①,正方形ABCD中,点E是对角线AC上任意一点,过点E作EF⊥AC,垂足为E,交BC所在直线于点F.探索AF与DE之间的数量关系,并说明理由.
(1)如图②,当E是对角线AC的中点时,AF与DE之间的数量关系是 .
(2)小明用“平移法”将AF沿AD方向平移得到DG,将原来分散的两条线段集中到同一个三角形中,如图③,这样就可以将问题转化为探究DG与DE之间的数量关系.请你按照他的思路,完成解题过程.
18.如图,在△ABC和△DEF中,∠C、∠F都是锐角且∠C>∠B,∠F>∠E,AB=DE,AC=DF,∠C=∠F,△ABC≌△DEF吗?说明理由.
19.(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;
(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.
20.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直过C点的直线于E,直线CE交BA的延长线于F.求证:
(1)Rt△BEF≌Rt△BEC;
(2)BD=2CE.
21.已知,如图,五边形ABCDE中AB=AE,∠B=∠E,BC=ED.
求证:∠BCD=∠EDC.
22.如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:
(1)△ABP≌△AEQ;
(2)EF=BF.
23.已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.
(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.
求证:①△BDF≌△ADC;
②FG+DC=AD;
(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.
24.已知:如图,∠MON在∠AOB的内部,点C、D分别在射线OA、OB上,且OC=OD,CE⊥OA,DF⊥OB,分别交OM、ON于点E、F.
(1)如图①所示,若∠AOB=90°,∠MON=45°,延长EC至点G,使得CG=DF,请证明EF=CE+DF;
(2)如图所示,若∠AOB=α,EF=CE+DF.求∠MON的度数.
25.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若EF=BE+FD.
求证:∠EAF=∠BAD
(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,证明你的结论.
26.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.
27.如图,Rt△ABC中,AB=AC,∠BAC=90°,点O是BC的中点,如果点M、N分别在线段AB、AC上移动,并在移动过程中始终保持AN=BM.
(1)求证:△ANO≌△BMO;
(2)求证:OM⊥ON.
28.问题情境:如图1,∠AOB=90°,OC平分∠AOB,把三角尺的直角顶点落在OC的任意一点P上,并使三角尺的两条直角边分别与OA、OB相交于点E、F,PE与PF相等吗?请你给出证明;
变式拓展:如图2,已知∠AOB=120°,OC平分∠AOB,P是OC上一点,∠EPF=60°,PE边与OA边相交于点E,PF边与射线OB的反向延长线相交于点F.试解决下列问题:
①PE与PF还相等吗?为什么?
②试判断OE、OF、OP三条线段之间的数量关系,并说明理由.
29.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.
30.如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连接EG,EF.
(1)求证:BG=CF.
(2)请你猜想BE+CF与EF的大小关系,并说明理由.
31.阅读探索题:
(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.
(2)请你参考以上方法,解答下列问题:
如图2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系并证明.
32.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.
请你参考这个作全等三角形的方法,解答下列问题:
(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;
(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;
(3)如图3,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
33.如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,
(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.
(2)连接AM,求证:MA平分∠EMF.
34.如图,在△ABC中,已知∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,CD与BM相交于点E,且点E是CD的中点,连接MD,过点D作DN⊥MD,交BM于点N.
(1)求证:△DBN≌△DCM;
(2)请探究线段NE、ME、CM之间的数量关系,并证明你的结论.
35.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.
(1)求证:△ABC≌△EDC;
(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.
①求∠DHF的度数;
②若EB平分∠DEC,试说明:BE平分∠ABC.
36.如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO+∠PEO=180°.
四.全等三角形的应用
37.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是( )
A.SSS B.SAS C.ASA D.AAS
38.如图,要测量河两岸相对的A、B两点的距离,可以在与AB垂直的河岸BF上取C、D两点,且使BC=CD,从点D出发沿与河岸BF的垂直方向移动到点E,使点E与A,C在一条直线上,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )
A.ASA B.HL C.SAS D.SSS
参考答案
一.全等三角形的性质
1.解:延长C′D交AC于M,如图,
∵△ADC≌△ADC′,△AEB≌△AEB′,
∴∠C′=∠ACD,∠C′AD=∠CAD=∠B′AE=α,
∴∠C′MC=∠C′+∠C′AM=∠C′+2α,
∵C′D∥B′E,
∴∠AEB′=∠C′MC,
∵∠AEB′=180°﹣∠B′﹣∠B′AE=180°﹣∠B′﹣α,
∴∠C′+2α=180°﹣∠B′﹣α,
∴∠C′+∠B′=180°﹣3α,
∵β=∠BFC=∠BDF+∠DBF=∠DAC+∠ACD+∠B'=α+∠ACD+∠B′=α+∠C′+∠B′=α+180°﹣3α=180°﹣2α,
即:2α+β=180°.
故选:A.
二.全等三角形的判定
2.解:由题意知:∠CMO=∠CNO=90°,
在Rt△MOC和Rt'△NOC中,
,
∴Rt△MOC≌Rt△NOC(HL),
∴∠MOC=∠NOC,
∴OC是∠AOB的角平分线,
故选:A.
3.解:如图,
以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.
以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.
所以可画出6个.
故答案为:6.
4.解:①当两边及其中一边的对角确定时,此时是ASS,可知这个三角形是不确定的;
②当三角形的三边确定时,由SSS可知这个三角形是确定的;
③此时可知三角形的两角及其夹边确定,由ASA可知这个三角形是确定的;
④根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形;
故答案为:②③.
5.解:第一个图形中全等三角形有×2×1=1对全等三角形;
第二个图形中全等三角形有×3×2=3对全等三角形;
第三个图形中全等三角形有×4×3=6对全等三角形;…
第200个图形有×201×200=20100对全等三角形.
故答案为:20100.
6.解:(1)可画出下面的反例:
图中,AB=CD,DA∥BC,小明的证明方法就错误了,理由直线AD与BC没有交点.
(2)答案不唯一,如OA=OC.
理由如下:
∵AB=CD,OA=OC,
∴AB﹣OA=CD﹣OC,即OB=OD.
在△AOD和△COB中
,
∴△AOD≌△COB(SAS).
三.全等三角形的判定与性质
7.解:∵OM平分∠AOB,
∴∠AOM=∠BOM,
∵MA⊥OA,MB⊥OB,
∴∠MAO=∠MBO=90°,
∵∠MAB=20°,
∴∠OAB=70°,
在△AOM和△BOM中,
,
∴△AOM≌△BOM(AAS),
∴OB=OA,
∴∠OAB=∠OBA=70°,
∴∠AOB=40°,
故选:D.
8.解:过点A作AH⊥BC于H,如图所示:
在△ABC与△ADE中,
,
∴△ABC≌△ADE(SAS),
∴AD=AB,S△ABC=S△AED,
又∵AF⊥DE,
∴×DE×AF=×BC×AH,
∴AF=AH,
∵AF⊥DE,AH⊥BC,
∴∠AFG=∠AHG=90°,
在Rt△AFG和Rt△AHG中,
,
∴Rt△AFG≌Rt△AHG(HL),
同理:Rt△ADF≌Rt△ABH(HL),
∴S四边形DGBA=S四边形AFGH=12,
∵Rt△AFG≌Rt△AHG,
∴SRt△AFG=6,
∵AF=4,
∴×FG×4=6,
解得:FG=3;
故选:C.
9.解:在△AEF和△ABC中,
,
∴△AEF≌△ABC(SAS),
∴∠EAF=∠BAC,AF=AC,故②正确
∴∠EAB=∠FAC=40°,故①正确,
∴∠C=∠AFC=∠AFE=70°,
∴∠EFB=180°﹣70°﹣70°=40°,故⑤正确,
∵AE=AB,∠EAB=40°,
∴∠AEB=∠ABE=70°,
若∠EBC=110°,则∠ABC=40°=∠EAB,
∴∠EAB=∠ABC,
∴AE∥BC,显然与题目条件不符,故③错误,
若AD=AC,则∠ADF=∠AFD=70°,
∴∠DAF=40°,这个显然与条件不符,故④错误.
故选:C.
10.解:在△ABC和△ADE中,
,
∴△ABC≌△ADE(SSS),
∴∠CAB=∠EAD,∠B=∠D,
∵∠CAD=10°,∠EAB=120°,
∴∠CAB=(∠EAB﹣∠CAD)=×(120°﹣10°)=55°,
∴∠FAB=∠CAD+∠CAB=10°+55°=65°,
∵∠GFD=∠AFB,
∴∠DGB=∠FAB=65°.
故答案为:65°.
11.解:作BF⊥DC于F,如图,
∵∠CDA=90°,BE⊥AD,BF⊥DF,
∴四边形BEDF为矩形,
∴∠EBF=90°,即∠EBC+∠CBF=90°
∵∠ABC=90°,即∠EBC+∠ABE=90°,
∴∠ABE=∠CBE,
在△ABE和△CBF中,,
∴△ABE≌△CBF(AAS),
∴BE=BF,S△ABE=S△CBF,
∴四边形BEDF为正方形,四边形BEDF的面积=四边形ABCD的面积,
∴BE==4.
故答案为:4.
12.解:如图作PE⊥OA于E,PF⊥OB于F.
∵∠PEO=∠PFO=90°,
∴∠EPF+∠AOB=180°,
∵∠MPN+∠AOB=180°,
∴∠EPF=∠MPN,
∴∠EPM=∠FPN,
∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,
∴PE=PF,
在Rt△POE和Rt△POF中,
,
∴Rt△POE≌Rt△POF,
∴OE=OF,
在△PEM和△PFN中,
,
∴△PEM≌△PFN,
∴EM=NF,PM=PN,故(1)正确,
∴S△PEM=S△PNF,
∴S四边形PMON=S四边形PEOF=定值,故(3)正确,
∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,
∵M,N的位置变化,∴MN的长度是变化的,故(4)错误,
故答案为:(1)(2)(3)
13.证明:∵△ABC≌△A′B′C′,
∴AC=A′C′,∠A=∠A′,AB=A′B′,
∵CD、C′D′分别是AB、A′B′边上的中线,
∴AD=AB,A′D′=A′B′,
∴AD=A′D′,
在△CAD和△C′A′D′中,
,
∴△CAD≌△C′A′D′(SAS),
∴CD=C′D′.
14.证明:(1)①如图2:
∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMA=∠CNM=90°,
∴BM∥CN,
∴∠MBP=∠ECP,
又∵P为BC边中点,
∴BP=CP,
在△BPM和△CPE中,
,
∴△BPM≌△CPE,(ASA)
②∵△BPM≌△CPE,
∴PM=PE∴PM=ME,
∴在Rt△MNE中,PN=ME,
∴PM=PN;
(2)成立,如图3.
延长MP与NC的延长线相交于点E,
∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,
∴BM∥CN∴∠MBP=∠ECP,
又∵P为BC中点,
∴BP=CP,
在△BPM和△CPE中,
,
∴△BPM≌△CPE,(ASA)
∴PM=PE,
∴PM=ME,
则Rt△MNE中,PN=ME,
∴PM=PN.
15.解:(1)△ABD≌△ACD的理由是AAS,
故答案为AAS.
(2)证明:过点D作DE⊥AB于点E,过点D作DF⊥AC于点F.
∵∠BED=∠CFD=90°,∠B=∠C,BD=CD.
∴△BDE≌△CDF(AAS).
∴BE=CF,DE=DF.
在Rt△AED和Rt△AFD中,∠AED=∠AFD=90°.
∵AD=AD,DE=DF,
∴Rt△AED≌Rt△AFD.
∴AE=AF.
∴AE+BE=AF+CF.
即AB=AC.
16.(1)证明:在△ADC与△EDB中,
,
∴△ADC≌△EDB;
故答案为:△ADC≌△EDB;
(2)解:如图2,延长EP至点Q,使PQ=PE,连接FQ,
在△PDE与△PQF中,
,
∴△PEP≌△QFP,
∴FQ=DE=3,
在△EFQ中,EF﹣FQ<QE<EF+FQ,
即5﹣3<2x<5+3,
∴x的取值范围是1<x<4;
故答案为:1<x<4;
(3)证明:如图3,延长AD到M,使MD=AD,连接BM,
∴AM=2AD,
∵AD是△ABC的中线,
∴BD=CD,
在△BMD与△CAD中,
,
∴△BMD≌△CAD,
∴BM=CA,∠M=∠CAD,
∴∠BAC=∠BAM+∠CAD=∠BAM+∠M,
∵∠ACB=∠Q+∠CAQ,AB=BC,
∵∠ACQ=180°﹣(∠Q+∠CAQ),∠MBA=180°﹣(∠BAM+∠M),
∴∠ACQ=∠MBA,
∵QC=BC,
∴QC=AB,
在△ACQ与△MBA中,
,
∴△ACQ≌△MBA,
∴AQ=AM=2AD.
17.解:(1)AF=DE,理由如下:
∵四边形ABCD是正方形,E是对角线AC的中点,
∴AC⊥BD,AE=BE=CE=DE,
∵AB2=AE2+BE2,
∴AB2=2DE2,
∵B点与F点重合,
∴AF2=2DE2,
∴AF=DE;
故答案为:AF=DE;
(2)如图,过点E作MN∥CD交AD于点N,交BC于点M,
∵四边形ABCD是正方形,
∴∠DAB=∠B=∠BCD=∠ADC=90°,AB=BC=CD=DA,∠ACB=45°,
∴∠NMC=180°﹣∠DCM=90°,
∴四边形MCDN是矩形,
∴ND=MC,MN=CD,∠DNE=90°,
∵EF⊥AC,
∴△CEF是等腰直角三角形,
∴EM=FM=CM,
∴EM=DN,
由平移可知:BF=CG,AF=DG,
∴BF+FM=CG+MC,
∴BM=MG,
∵NE=MN﹣EM,BM=BC﹣CM,MN=CD=BC,
∴NE=BM=MG,
在△DNE和△EMG中,
,
∴△DNE≌△EMG(SAS),
∴DE=EC,∠DEN=∠EGM,
∵∠EGM+∠MEG=90°,
∴∠DEN+∠MEG=90°,
∴∠DEG=180°﹣90°=90°,
∴△DEG为等腰直角三角形,
∴DG=DE.
18.解:△ABC≌△DEF,理由如下:
如图,过点A、D分别作BC、EF的垂线,垂足为M、N,
∴∠AMC=∠DNF=90°,
在△AMC和△DNF中,
∴△AMC≌△DNF(AAS),
∴AM=DN,
在Rt△ABM和Rt△DEN中,
,
∴Rt△ABM≌Rt△DEN(HL),
∴∠B=∠E,
在△ABC和△DEF中,
∴△ABC≌△DEF(AAS).
19.解:(1)如图①,
∵CF⊥AE,BD⊥AE,∠MAN=90°,
∴∠BDA=∠AFC=90°,
∴∠ABD+∠BAD=90°,∠ABD+∠CAF=90°,
∴∠ABD=∠CAF,
在△ABD和△CAF中,
,
∴△ABD≌△CAF(AAS);
(2)∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,
∴∠ABE=∠CAF,∠BAE=∠FCA,
在△ABE和△CAF中,
,
∴△ABE≌△CAF(ASA);
(3)∵△ABC的面积为15,CD=2BD,
∴△ABD的面积是:×15=5,
由(2)中证出△ABE≌△CAF,
∴△ACF与△BDE的面积之和等于△ABE与△BDE的面积之和,即等于△ABD的面积,是5.
20.证明:(1)∵BD是∠ABC的平分线,
∴∠FBE=∠CBE,
∵BE⊥CF,
∴∠BEF=∠BEC=90°,
在Rt△BEF和Rt△BEC中,
,
∴Rt△BEF≌Rt△BEC(ASA).
(2)∵Rt△BEF≌Rt△BEC,
∴BF=BC,
∴CE=EF,
∴CF=2CE,
∵∠BAC=90°,且AB=AC,
∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,
∴∠FBE=∠CBE=22.5°,
∴∠F=∠ADB=67.5°,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(AAS),
∴BD=CF,
∵CF=2CE,
∴BD=2CE.
21.证明:如图,连接AC,AD,
在△ABC和△AED中,
,
∴△ABC≌△AED(SAS),
∴AC=AD,∠ACB=∠ADE,
∴∠ACD=∠ADC,
∴∠BCD=∠EDC.
22.解:(1)∵△ABE和△APQ是等边三角形,
∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,
∴∠BAE﹣∠PAE=∠PAQ﹣∠PAE,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中,
,
∴△QAE≌△PAB(SAS);
(2)∵△QAE≌△PAB
∴∠ABP=∠AEQ=90°.
∴∠AEF=90°,
∴∠ABP=∠AEF
∴∠ABP﹣∠AEB=∠AEF﹣∠ABE,
∴∠BEF=∠EBF,
∴BF=EF.
23.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,
∴∠BAD=∠ABC=45°,∴AD=BD;
∵∠BEC=90°,∴∠CBE+∠C=90°
又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;
∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)
②∵△FDB≌△CDA,∴DF=DC;
∵GF∥BC,∴∠AGF=∠ABC=45°,
∴∠AGF=∠BAD,
∴FA=FG;
∴FG+DC=FA+DF=AD.
(2)FG、DC、AD之间的数量关系为:FG=DC+AD.
理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,
∴BD=AD,FG=AF=AD+DF;
∵∠FAE+∠DFB=∠FAE+∠DCA=90°,
∴∠DFB=∠DCA;
又∵∠FDB=∠CDA=90°,BD=AD,
∴△BDF≌△ADC(AAS);
∴DF=DC,
∴FG、DC、AD之间的数量关系为:FG=DC+AD.
24.(1)证明:∵CE⊥OA,DF⊥OB,
∴∠OCG=∠ODF=90°,
在△OCG和△ODF中,
,
∴△OCG≌△ODF(SAS),
∴∠COG=∠DOF,OG=OF,
∵∠AOB=90°,∠MON=45°,
∴∠COE+∠DOF=45°,
∴∠COE+∠COG=45°,
即∠EOG=45°=∠MON,
在△EOG和△EOF中,
,
∴△EOG≌△EOF(SAS),
∴EF=EG,
即EF=CE+DF;
(2)解:如图②,延长EC至G,使CG=DF,连接OG,
∵CE⊥OA,DF⊥OB,
∴∠OCG=∠ODF=90°,
在△OCG和△ODF中,
,
∴△OCG≌△ODF(SAS),
∴∠COG=∠DOF,OG=OF,
∵EG=CE+CG=CE+DF,EF=CE+DF,
∴EG=EF,
在△EOG和△EOF中,
,
∴△EOG≌△EOF(SSS),
∴∠EOG=∠EOF,
∵∠EOG+∠EOF=∠COG+∠AOF=∠DOF+∠AOF=∠AOB,∠AOB=α,
∴∠EOF=∠MON=∠AOB=α.
25.证明:(1)延长CB至M,使得BM=DF,连接AM,
∵∠B=∠D=90°,AB=AD,
在△ABM与△ADF中
,
∴△ABM≌△ADF(SAS),
∴AM=AF,∠DAF=∠BAM,
∵EF=BE+DF=BE+BM=ME,
在△AME与△AFE中
,
∴△AME≌△AFE(SSS),
∴∠MAE=∠EAF,
∴∠BAE+∠DAF=∠EAF,
即∠EAF=∠BAD;
(2)线段EF、BE、FD之间的数量关系是EF+DF=BE,
在BE上截取BM=DF,连接AM,
∵AB=AD,∠B+∠ADC=180°,∠ADC+∠ADF=180°,
∴∠ABM=∠ADF,
在△ABM与△ADF中
,
∴△ABM≌△ADF(SAS),
∴AM=AF,∠BAM=∠DAF,∠EAF=∠BAD,
∴∠EAF=∠EAM,
在△AEM与△AEF中
,
∴△AEM≌△AEF(SAS),
∴EM=EF,
即BE﹣BM=EF,
即BE﹣DF=EF.
26.证明:在AB上截取AF=AD,
∵AE平分∠PAB,
∴∠DAE=∠FAE,
在△DAE和△FAE中,
∵,
∴△DAE≌△FAE(SAS),
∴∠AFE=∠ADE,
∵AD∥BC,
∴∠ADE+∠C=180°,
∵∠AFE+∠EFB=180°,
∴∠EFB=∠C,
∵BE平分∠ABC,
∴∠EBF=∠EBC,
在△BEF和△BEC中,
∵,
∴△BEF≌△BEC(AAS),
∴BC=BF,
∴AD+BC=AF+BF=AB.
27.证明:(1)∵AB=AC,∠BAC=90°,O为BC的中点,
∴OA⊥BC,OA=OB=OC,
∴∠NAO=∠B=45°,
在△AON与△BOM中,
,
∴△AON≌△BOM;
(2)∵△AON≌△BOM,
∴∠NOA=∠MOB,
∵AO⊥BC,
∴∠AOB=90°,
即∠MOB+∠AOM=90°.
∴∠NOM=∠NOA+∠AOM=∠MOB+∠AOM=90°,
∴OM⊥ON.
28.问题情境:证明:过点P作PM⊥OB于M,PN⊥OA于N.
∵OC平分∠AOB,PM⊥OB,PN⊥OA,
∴PM=PN,
∵∠PMO=∠PNO=∠MON=90°,
∴∠MPN=360°﹣3×90°=90°,
∵∠MPN=∠EPF=90°,
∴∠MPF=∠NPE,
在△PMF和△PNE中,
,
∴△PMF≌△PNE(ASA),
∴PF=PE;
变式拓展:①解:结论:PE=PF.
理由:过点P作PM⊥OB于M,PN⊥OA于N,
∵OC平分∠AOB,PM⊥OB,PN⊥OA,
∴PM=PN,
∵∠PMO=∠PNO=90°,∠MON=120°,
∴∠MPN=360°﹣2×90°﹣120°=60°,
∵∠MPN=∠EPF=60°,
∴∠MPF=∠NPE,
在△PMF和△PNE中,
,
∴△PMF≌△PNE(ASA),
∴PF=PE;
②解:结论:OE﹣OF=OP.
理由:在△OPM和△OPN中,
,
∴△POM≌△PON(AAS),
∴OM=ON,
∵△PMF≌△PNE(ASA),
∴FM=EN,
∴OE﹣OF=EN+ON﹣(FM﹣OM)=2OM,
在Rt△OPM中,∠PMO=90°,,
∴∠OPM=30°,
∴OP=2OM,
∴OE﹣OF=OP.
29.解:(1)如图1,
∵BD⊥直线l,CE⊥直线l,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)DE=BD+CE.
如图2,
证明如下:
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠DBA=∠CAE,
在△ADB和△CEA中.
.
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE
(3)如图3,
过E作EM⊥HI于M,GN⊥HI的延长线于N.
∴∠EMI=GNI=90°
由(1)和(2)的结论可知EM=AH=GN
∴EM=GN
在△EMI和△GNI中,
,
∴△EMI≌△GNI(AAS),
∴EI=GI,
∴I是EG的中点.
30.(1)证明:∵BG∥AC,
∴∠C=∠GBD,
∵D是BC的中点,
∴BD=DC,
在△CFD和△BGD中
,
∴△CFD≌△BGD,
∴BG=CF.
(2)BE+CF>EF,
理由如下:
∵△CFD≌△BGD,
∴CF=BG,
在△BGE中,BG+BE>EG,
∵△CFD≌△BGD,
∴GD=DF,ED⊥GF,
∴EF=EG,
∴BE+CF>EF.
31.(1)证明:在△AOB和△AOC中,,
∴△AOB≌△AOC(SAS).
(2)在CB上截取CE=CA,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
在△ACD和△ECD中,,
∴△ACD≌△ECD(SAS),
∴∠CAD=∠CED=60°,
∵∠ACB=90°,
∴∠B=30°,
∴∠EDB=30°,
即∠EDB=∠B,
∴DE=EB,
∵BC=CE+BE,
∴BC=AC+DE,
∴BC=AC+AD.
32.解:(1)如图2,∵∠ACB=90°,∠B=60°.
∴∠BAC=30°,
∵AD、CE分别是∠BAC和∠BCA的平分线,
∴∠DAC=∠BAC=15°,∠ECA=∠ACB=45°.
∴∠EFA=∠DAC+∠ECA=15°+45°=60°.
(2)FE=FD.
如图2,在AC上截取AG=AE,连接FG.
∵AD是∠BAC的平分线,
∴∠EAF=∠GAF,
在△EAF和△GAF中
∵
∴△EAF≌△GAF(SAS),
∴FE=FG,∠EFA=∠GFA=60°,
∴∠GFC=180°﹣60°﹣60°=60°.
又∵∠DFC=∠EFA=60°,
∴∠DFC=∠GFC,
在△FDC和△FGC中
∵
∴△FDC≌△FGC(ASA),
∴FD=FG.
∴FE=FD.
(3)(2)中的结论FE=FD仍然成立.
同(2)可得△EAF≌△HAF,
∴FE=FH,∠EFA=∠HFA,
又由(1)知∠FAC=∠BAC,∠FCA=∠ACB,
∴∠FAC+∠FCA=(∠BAC+∠ACB)=(180°﹣∠B)=60°.
∴∠AFC=180°﹣(∠FAC+∠FCA)=120°.
∴∠EFA=∠HFA=180°﹣120°=60°,
同(2)可得△FDC≌△FHC,
∴FD=FH.
∴FE=FD.
33.(1)解:结论:EC=BF,EC⊥BF.
理由:∵AE⊥AB,AF⊥AC,
∴∠EAB=∠CAF=90°,
∴∠EAB+∠BAC=∠CAF+∠BAC,
∴∠EAC=∠BAF.
在△EAC和△BAF中,
,
∴△EAC≌△BAF(SAS),
∴EC=BF.∠AEC=∠ABF
∵∠AEG+∠AGE=90°,∠AGE=∠BGM,
∴∠ABF+∠BGM=90°,
∴∠EMB=90°,
∴EC⊥BF.
∴EC=BF,EC⊥BF.
(2)证明:作AP⊥CE于P,AQ⊥BF于Q.
∵△EAC≌△BAF,
∴AP=AQ(全等三角形对应边上的高相等).
∵AP⊥CE于P,AQ⊥BF于Q,
∴AM平分∠EMF.
34.(1)证明:∵∠ABC=45°,CD⊥AB,
∴∠ABC=∠DCB=45°,
∴BD=DC,
∵∠BDC=∠MDN=90°,
∴∠BDN=∠CDM,
∵CD⊥AB,BM⊥AC,
∴∠ABM=90°﹣∠A=∠ACD,
在△DBN和△DCM中,
,
∴△DBN≌△DCM.
(2)结论:NE﹣ME=CM.
证明:由(1)△DBN≌△DCM 可得DM=DN.
作DF⊥MN于点F,又 ND⊥MD,
∴DF=FN,
在△DEF和△CEM中,
,
∴△DEF≌△CEM,
∴ME=EF,CM=DF,
∴CM=DF=FN=NE﹣FE=NE﹣ME.
35.(1)证明:∵CA平分∠BCE,
∴∠ACB=∠ECD,
在△ABC和△EDC中,,
∴△ABC≌△EDC(SAS);
(2)①解:在△BCF和△DCG中,,
∴△BCF≌△DCG(SAS);
∴∠CBF=∠CDG,
在△BCF和△DHF中,∵∠BFC=∠DFH,
∴∠DHF=∠ACB=60°;
②证明:如图(2)所示:
由(1)得:△ABC≌△EDC,
∴∠DEC=∠A,
∵∠ACB=∠ECD=60°,
∴∠ECM=60°,
∵EB平分∠DEC,
∴∠DEC=2∠1,
∵∠ECM=∠2+∠1=60°,∠DCM=∠A+∠ABC=120°,
∴∠A+∠ABC=2(∠2+∠1)=2∠2+2∠1=2∠2+∠A,
∴∠ABC=2∠2,
∴BE平分∠ABC.
36.证明:
过P分别作PM⊥OA于点M,PNF⊥OB于点N,
∵OC平分∠AOB,
∴PM=PN,
在Rt△PMD和Rt△PNE中,
∴Rt△PMD≌Rt△PNE(HL),
∴∠PDM=∠PEN,
∵∠PEO+∠PEN=180°,
∴∠PDO+∠PEO=180.
四.全等三角形的应用
37.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.
故选:C.
38.解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,
所以用到的是两角及这两角的夹边对应相等即ASA这一方法.
故选:A.